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Abstract: Core–shell inorganic/organic composites have often been applied as fillers in electromag-
netic interference shielding. Those composed of conducting polymers and ferrites are of particular
interests with respect to their electrical and magnetic properties. Pyrrole was oxidized in aqueous
medium in the presence of manganese-zinc ferrite microparticles with ammonium peroxydisulfate or
iron(III) chloride to yield polypyrrole-coated, core–shell microstructures. The effect of methyl orange
dye on the conversion of globular polypyrrole to nanotubes has been demonstrated by electron
microscopy when iron(III) chloride was used as an oxidant. The formation of polypyrrole was proved
by FTIR spectroscopy. The completeness of ferrite coating was confirmed by Raman spectroscopy.
The resistivity of composite powders was determined by four-point van der Pauw method as a
function of pressure applied up to 10 MPa. The conductivity of composite powders was determined
by a polypyrrole matrix and only moderately decreased with increasing content of ferrite. The
highest conductivity of composites, 13–25 S cm−1, was achieved after the deposition of polypyrrole
nanotubes. Magnetic properties of composites have not been affected by the polypyrrole moiety, and
the magnetization of composites was proportional to the ferrite content.

Keywords: conducting polymer; conductivity; resistivity; ferrite microparticles; hybrid composite;
globular polypyrrole; polypyrrole nanotubes; magnetic properties

1. Introduction

The composites are composed at least of two components that provide functional
properties associated with their specific microstructure. Hybrid organic/inorganic compos-
ites are often based on magnetic and conducting inorganic microparticles embedded in a
matrix of organic polymer that enables the processing and affords mechanical properties
required by applications. The use of organic conducting polymers introduces an additional
functional moiety into the composite. Conducting polymers are typically represented in
hybrid composites by polyaniline and polypyrrole, and their inorganic part by metals,
metal oxides, and sulfides or ferrites [1]. The combination of electrical and electrochem-
ical properties afforded by the former component with magnetic ones of inorganic part
has often been used in the design of new functional materials. The papers on this topic
started to appear only in the beginning of this century [2,3] and their number increased in
following years. The present contribution concentrates on the recent advances in hybrid
polypyrrole/ferrite composites and their experimental extension.

The composites comprising polypyrrole and ferrites are the best examples of pro-
mising functional materials [4]. They have been prepared simply by mixing of both
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components [5–9]. Usually, however, the in-situ coating of ferrite with polypyrrole has been
exploited as it guarantees more intimate interaction between the components and even
distribution of inorganic part in an organic matrix. As a rule, polypyrrole was prepared
by the oxidation of pyrrole in aqueous medium containing dispersed ferrite nanoparticles
or microparticles [10–18]. In this way, ferrite particles become coated with an overlayer of
conducting polymer thus creating core–shell microstructure [2,12,15]. The process is based
on the generation of pyrrole oligomers that adsorb at the dispersed particles followed by the
brush-like growth of polypyrrole chains from the surface. In the resulting composite, ferrite
microparticles are dispersed in polypyrrole matrix. They are separated by the coating and
cannot be in contact with each other, in contrast with mixtures where they form clusters.
The composites are obtained as powders. They can be applied directly compressed to
pellets or, depending on the intended application, they are embedded as fillers in inert
polymer matrix that affords the desired form and mechanical properties [8].

Polypyrrole can be present in two fundamental morphologies at nanoscale, as nanoglob-
ules or nanotubes. The latter form is obtained when the preparation of polypyrrole is
carried out in the presence of methyl orange dye [19,20] that acts as a structure-guiding
agent. Nanotubes are preferred over the globular form when the conductivity higher by
one order of magnitude is of benefit.

Ferrite nanoparticles or microparticles used in the literature for the deposition of
polypyrrole have been based on barium [7,9,14,21–24], cobalt [2,25–28], magnesium [10],
manganese [13,29,30], manganese-zinc [3,11,15,31,32], nickel [12,33], strontium [6], or
zinc [8,16–18,26,34]. A closely related magnetite is not included in this brief account.

Ternary composites including the third component, usually an organic elastomer,
have also been reported. Auxiliary polymer additives, e.g., gelatin [22,23], alginate [16], or
polyurethane [31], served to improve the composite processing or to provide the specific
microstructure required by applications. The preparation protocol may include addi-
tional inorganic components based mainly on carbon, viz. graphene [29], graphite ni-
tride [34], graphite oxide [25,27,32], or carbon nanotubes [35], usually in order to improve
the conductivity.

Many applications of polypyrrole/ferrite composites have been based on both electri-
cal and magnetic properties. Ferrites are typical ferromagnetic components in materials
used for the shielding of electromagnetic interference [6,9,12,36]. Polypyrrole introduces
the conductivity. Therefore, the radiation reflection and absorption contributions can be
conveniently balanced by the composite composition [12,14,21]. The microwave absorption
by both components has been used in the heating elements for the hyperthermia treatment
of tumours in medicine [5,13].

Magnetic properties alone play a key role in magnetorheological fluids when the
rheology of particles suspension is controlled by applied magnetic field. In this case,
regardless of the conductivity, conducting polymer coating reduces the average particle
density and prevents the sedimentation and aggregation of magnetic particles [37]. When
polypyrrole is used as a coating in the core–shell structure, the interfacial phenomena
between the ferrite core and polypyrrole coating may also occur [34,38] resulting in the
change of magnetic properties. Polypyrrole may also act as an efficient adsorbent in water
pollution treatment [39,40]. In the composites with ferrites, it has been used for removal of
pollutant organic dyes [8,23,32], drugs [16], and chromium(VI) [22]. Ferrite allows for the
separation and recovery of adsorbent by magnetic field.

The electrochemical activity of polypyrrole in the composites with ferrites has been
exploited in energy-storage devices, such as supercapacitors [41]. The copper-cobalt fer-
rite coated with a conducting polymer served as an electrode [42]. Polypyrrole then
provides pseudocapacitance contribution [25,27–29,33]. In lithium-ion batteries, polypyr-
role/zinc ferrite electrodes displayed improved conductivity and stability during long-term
cycling [17,18]. Electrochemical properties of polypyrrole manifest themselves in the cor-
rosion protection. For example, polypyrrole/barium ferrite composite was tested in the



J. Compos. Sci. 2024, 8, 373 3 of 14

corrosion inhibition of aluminium [21]. In another field, electrochemically driven release of
simazine herbicide was proposed [35].

Catalytic properties of composites are also valued. For example, ferrite coated with
polypyrrole was applied as an electrocatalyst in oxygen evolution reaction [43]. In addition,
the composites participated in the photocatalysis of hydrogen evolution [26,34] or assisted
in photodegradation of ciprofloxacin antibiotics [34].

As illustrated above, functional polypyrrole/ferrite composites have been used in
widely differing applications. The studies of their microstructure and fundamental elec-
trical, magnetic, and physico-chemical properties are thus essential to understand their
role and performance. Despite the explicit or implicit use of electrical conductivity, the
quantitative assessment of this parameter is missing in the literature. This is partly due
to the experimental difficulties met with the characterization of powders that cannot be
compressed to pellets needed for routine four-point conductivity measurement. Moreover,
the measured quantity is dependent on applied pressure.

The present study concentrates on hybrid composites composed of polypyrrole-coated
MnZn ferrite. Electrical properties afforded mainly by polypyrrole are of prime interest. The
feasibility of the coating of MnZn ferrite with polypyrrole has already been reported in the
literature [3,15,31,32]. The present study extends the protocol of polypyrrole preparation,
viz. the effect of acidity of reaction medium and oxidant type. It also concentrates on the
generation of polypyrrole in both globular and nanotubular forms. The evaluation of elec-
trical properties of composite powders as a function of applied pressure is newly reported.
The core–shell composites of are designed for the application as fillers in electromagnetic
interference shielding and they will be tested for this purpose in forthcoming studies.

2. Materials and Methods
2.1. Preparation

Microparticles with average size 11 µm of manganese-zinc (MnZn) ferrite (Siferrit
material N27, TDK Electronics s.r.o., Czech Republic) with the morphology of irregular
crushed particles was used as a substrate for the coating with a conducting polymer. Vari-
ous amounts of ferrite (1–8 g) were dispersed in water containing pyrrole, and ammonium
peroxydisulfate solution in water or 0.1 M sulfuric acid was added to start in situ polymer-
ization of pyrrole at room temperature. The 200 mL of reaction mixture contained 0.1 M
pyrrole (1.34 g, 20 mmol) and 0.125 M ammonium peroxydisulfate (5.71 g, 25 mmol). After
30 min, the ferrite microparticles coated with polypyrrole were separated on paper filter,
and rinsed with water followed by ethanol to remove any unreacted species and soluble
by-products. The solids containing also accompanying globular polypyrrole were dried at
room temperature in open air.

The analogous composites were also prepared following the modified protocol in
water that contained in addition 0.004 M methyl orange (260 mg) in attempt to promote
the formation of polypyrrole nanotubes [19]. The syntheses have been carried out also
with iron(III) chloride as an oxidant. In this case, 200 mL of reaction mixture contained
0.25 M iron(III) chloride hexahydrate (13.5 g, 50 mmol). All chemicals were supplied by
Sigma-Aldrich branch (Prague, Czech Republic) and used as delivered.

2.2. Composition and Morphology

The weight fraction of ferrite was determined after the combustion of the organic
part in oxygen at 800 ◦C in a muffle furnace (Nabertherm L9/S27, Lilienthal, Germany).
Scanning electron microscope (Nova NanoSEM FEI, Brno, Czech Republic) was used to
reveal the morphology of ferrite before and after the coating with polypyrrole.

2.3. Spectroscopy

ATR FTIR spectra were collected with a spectrometer Nicolet 6700 (Thermo-Nicolet,
Waltham, MA, USA) using a reflective ATR extension GladiATR (PIKE Technologies, Fitch-
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burg, WI, USA). Spectra were registered in the range of 4000–400 cm−1 with a resolution
4 cm−1, 64 scans, and Happ-Genzel appodization.

Dispersive Raman spectra were registered in a back-scattering geometry using a
Scientific DXR Raman microscope (Thermo Fisher Scientific, Waltham, MA, USA) with
a 780 nm laser excitation line. The scattered light was analysed by a spectrograph with
holographic grating 1200 lines mm−1 and a 50µm pinhole width.

2.4. Electrical and Magnetic Properties

A lab-made press using a four-point van der Pauw setup was based on a cylindrical
glass cell with an inner diameter of 10 mm [44] (Figure 1). The powdered composites
were placed between a support and a glass piston with four electrodes at its perimeter. A
Keithley 220 current source, a Keithley 2010 multimeter and a Keithley 705 scanner with a
Keithley 7052 matrix card (Keithley Instruments Inc., Cleveland, OH, USA) were included
in the setup. The pressure exerted with an E87H4-B05 stepper motor (Haydon Switch &
Instrument Inc., Waterbury, CT, USA) up to 10 MPa (=102 kp cm−2) limit was recorded
with a L6E3 strain gauge cell (Zemic Europe BV, Etten-Leur, The Netherlands). The sample
thickness was monitored with a dial indicator Mitutoyo ID-S112X (Mitutoyo Corp., Sakado,
Japan). The resistivity of composites was also separately determined on pellets prepared at
527 MPa with a manual hydraulic press (Specac, Orpington, UK).
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Figure 1. Four-point van der Pauw method of conductivity determination: 1—glass cylinder, 2—
platinum/rhodium contact wires, 3—glass piston with incorporated platinum electrodes, 4—powder
sample, 5—glass support. The DC voltage, U, was applied on the tip electrodes placed on the perime-
ter of the cylindrical sample base and the passing current, I (parallel with the bases) was recorded.
Potential polarization effects and inhomogeneity issues were reduced by switching of electrodes.

Magnetic hysteresis curves were determined at room temperature in the range
±10 kOe by a vibrating sample magnetometer (VSM, Model 7407, Westerville, OH, USA).

3. Results and Discussion
3.1. Composites

Conducting polymers are prepared by the chemical or electrochemical polymerization
of respective monomers. The former takes place in water and exploits a variety of inorganic
oxidants. In the present study, the oxidation of pyrrole to polypyrrole used the most
common ammonium peroxydisulfate [11,12,15,26] and iron(III) chloride [13,18] (Figure 2).
The ferrite surfaces immersed in the aqueous reaction mixture become coated with thin
polymer films of submicrometer thickness [45]. The hydrophobic oligomers generated
in the early stages of monomer oxidation adsorb at available interfaces and initiate the



J. Compos. Sci. 2024, 8, 373 5 of 14

brush-like growth of polymer chains. This results in the coating of ferrite microparticles
with polypyrrole. Any polypyrrole produced outside ferrite microparticles accompanies
them, and the final product is thus composed of core–shell, polypyrrole-coated ferrite
microparticles dispersed in polypyrrole matrix (Figure 2).
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Figure 2. The oxidation of pyrrole in aqueous medium yields polypyrrole sulfate or chloride. Ferrite
microparticles become coated with polypyrrole (PPy) shell, and are embedded in the matrix of
accompanying conducting polymer.

Three series of polypyrrole coatings of MnZn ferrite were tested. (1) The oxidation of
pyrrole with ammonium peroxydisulfate in water, (2) in acidic medium of 0.1 M sulfuric
acid, and (3) the oxidation of pyrrole with iron(III) chloride hexahydrate. The syntheses in
each series have been carried out in the absence or in the presence of methyl orange that
was expected to alter polypyrrole morphology. In the former case, globular polypyrrole is
obtained while the organic dye supports the formation of polypyrrole nanotubes, which
have higher conductivity [19,20,46].

3.2. Composition and Morphology

Various amounts of ferrite have been added to the reaction mixture (Section 2.1,
Table 1). The idealized stoichiometry (Figure 2) expects the 1.78 g yield of polypyrrole
sulfate. If, for example, x g of ferrite were added, the predicted content of ferrite in the
composite would be x/(1.78 + x), in good agreement with experimental results (Table 1).
This means that that ferrite acts as an inert additive that does not affect the chemistry of
synthesis and serves as a template for coating only. This is not automatically satisfied.
For instance, in the similar experiments with the coating of nickel microparticles with
polyaniline or polypyrrole, nickel dissolved in part or even completely depending under
such reaction conditions [47].

Table 1. Content of ferrite (wt%) in the composites with globular polypyrrole prepared in various
media using ammonium peroxydisulfate (APS) or iron(III) chloride (FeCl3) oxidants in 200 mL of
reaction mixture containing g grams MnZn ferrite.

g, g MnZn
Ferrite

Expected
(Figure 2) Water/APS 0.1 M

H2SO4/APS Water/FeCl3

1 35.9 32.6 31.7 –

2 52.9 52.5 44.6 52.0

4 69.2 68.3 64.2 –

6 77.1 76.5 72.2 76.7

8 81.7 81.5 78.7 81.4
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The morphology of ferrite resembles a crushed stone-like material (Figure 3) with
particles of irregular shape, and particle size of units to tens micrometers with a broad size
distribution. The original particles are accompanied by free polypyrrole (Figure 4). Some
polypyrrole globules also adhere to the coating.
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Figure 4. MnZn ferrite with deposited (a) globular polypyrrole and (b) polypyrrole nanotubes. The
200 mL of reaction mixture contained 2 g of ferrite. Scale bars 10 µm.

3.3. Spectroscopy

ATR FTIR spectrum of polypyrrole prepared in absence of ferrite (Polypyrrole in
Figure 5a) corresponds to the protonated form of polypyrrole [46]. It exhibits the main
bands with local maxima situated at 1540 cm−1 (C–C stretching vibrations in the pyrrole
ring), 1458 cm−1 (C–N stretching vibrations in the ring), 1287 cm−1 (C–H and C–N in-plane
deformation modes), 1161 cm−1 (breathing vibrations of the pyrrole ring), 1090 cm−1

(breathing vibrations of pyrrole ring), 1035 cm−1 (C–H and C–N in-plane deformation
vibrations), 964 cm−1 (C–H out-of-plane deformation vibrations of the ring), and at the
maxima at 768 and 664 cm−1 (C–C out-of-plane deformation vibrations of the ring) [47]. A
maximum at 1695 cm−1 was assigned to the carbonyl group created by the nucleophilic
attack of water on pyrrole ring during the preparation [19]. The shape of spectra of polypyr-
role/MnZn ferrites did not change with increasing amount of ferrite in the reaction mixture.
A broad absorption polaron band at wavenumbers above 2000 cm−1 corresponds to the
polarons within the chain structure, which act as charge carriers that are responsible for the
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electrical conduction. This band is more pronounced for polypyrrole prepared in absence
of ferrite. The presence of ferrite is demonstrated by a sharp peak situated at 519 cm−1

(Figure 5a), which becomes reduced as the amount of deposited polypyrrole increases.
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0–8 g ferrite per 200 mL of reaction mixture.

Laser excitation wavelength 780 nm used in the Raman scattering is in resonance
with the energy of polarons in the protonated polypyrrole. In Raman spectra of polypyr-
role prepared in the absence of ferrite (Polypyrrole in Figure 5b), we detect the bands
of polypyrrole with local maxima at 1586 cm−1 (C=C stretching vibrations of polypyr-
role backbone) and 1492 cm−1 (C–C and C=N stretching skeletal vibrations), two bands
of ring-stretching vibrations at 1380 and 1324 cm−1, a band at 1250 cm−1 (antisymmet-
ric C–H deformation vibrations), and a double-peak with local maxima at 1086 and
1054 cm−1 (C–H out-of-plane deformation vibrations, the second became sharper during
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deprotonation [19,46]. The Raman spectroscopy is the method of the surface-sensitive char-
acterization. Due to the resonance enhancement of the Raman spectrum of polypyrrole the
presence of ferrite is not detected in the Raman spectra of ferrite/polypyrrole composites,
thus confirming the complete coating of microparticles with conducting polymer.

3.4. Electrical Properties of Polypyrrole

The DC conductivity, or its reciprocal quantity, resistivity, is typically determined by
the four-point method. Although the former parameter is somewhat favoured by physicists,
the latter is often preferred by materials engineers. For powders, the determination is done
with free-standing pellets prepared by the compression in hydraulic press. But not for
all powders is this possible, with ferrites themselves being examples. In such cases, the
resistivity must be then recorded as a function of pressure applied to powders, and the
present experimental set-up allows for this type of measurements.

Electrical properties of polypyrrole depend on the conditions of polymer synthesis,
e.g., the oxidant type and resulting morphology that can be affected by the presence of
organic dyes [20], typically methyl orange (Figure 6). The double-logarithmic presentation
of polypyrrole resistivity on pressure is about linear. Polypyrrole prepared with ammonium
peroxydisulfate has higher resistivity that that produced with iron(III) chloride. Although
the addition of methyl orange had marginal effect on resistivity with the former oxidant, it
led to a marked decrease in the resistivity with the latter, i.e., the conductivity increased.
This is the result of the conversion of globular morphology to nanotubes. An earlier study
proved that with peroxydisulfate oxidant, the occurrence of nanotubes was rare, and they
were always accompanied by the globular form [47], while with iron(III) chloride nanotubes
clearly dominate [19] (Figure 4). The nanotubular morphology is thus responsible for the
enhanced conductivity.
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3.5. Electrical Properties of Polypyrrole-Coated Ferrites

Despite extensive studies of polypyrrole/ferrite composites, their DC conductivity
has seldom been reported, and even then with widely differing results, from the order of
10−7 S cm−1 [6] to a high value of 120 S cm−1 [2], obviously depending on the ferrite
type and the way of composite preparation. Typical conductivity of globular polypyrrole
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established in the literature is of the order of units S cm−1 [19] and lower conductivity
can be expected for ferrites. Six series of polypyrrole syntheses specified in the exper-
imental part have been carried out to prepare polypyrrole-coated ferrites. The sample
conductivities determined on compressed pellets are summarized in Table 2 with the
following observations:

Table 2. Conductivity (S cm−1) of polypyrrole/MnZn ferrite composites determined on pellets
(prepared at 527 MPa pressure) for various mass, g, of MnZn ferrite in the reaction medium. Pyrrole
was oxidized in water or 0.1 M H2SO4, with ammonium peroxydisulfate or iron(III) chloride, in the
absence or presence of methyl orange (MO).

Without Methyl Orange With Methyl Orange

g, MnZn
Ferrite per

200 mL
APS/H2O APS/0.1

M H2SO4
FeCl3/H2O APS/H2O APS/0.1 M

H2SO4
FeCl3/H2O

0 a 1.35 1.56 6.61 2.86 3.14 23.7

2 0.371 0.310 3.64 0.630 1.49 24.6

4 0.466 0.379 2.76 0.597 0.447 25.4

6 0.261 0.276 2.11 0.287 0.341 17.5

8 0.177 0.168 2.01 0.411 0.413 13.0
a Polypyrrole conductivity was taken from [47].

(1) The conductivity of composites moderately decreased with increasing content of
ferrite in the samples. This is also easily visible in the corresponding resistivity vs. pressure
curves (Figure 7). Please note that the resistivity of ferrite is four orders of magnitude higher
compared to polypyrrole. As ferrite microparticles are coated with polypyrrole, the contact
of ferrites cores is prevented (Figure 2), and the conductivity is determined exclusively by
continuous polypyrrole matrix. The introduction of ferrite reduces the volume fraction of
polypyrrole matrix in the composite and the resistivity only marginally increases in the
response (Figure 7).
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Please note that the conductivity of filler particles does not matter. In fact, the same
trend was obtained with the polypyrrole deposited on conducting nickel microparticles [47].
Because the metallic cores were protected by polypyrrole overlayer from mutual contacts,
they cannot generate conducting nickel pathways. As an apparent paradox, the conductiv-
ity of composites surprisingly decreases with increasing nickel content due to the reduction
of volume fraction of polypyrrole matrix, like in the present case with a MnZn ferrite.

(2) The increased acidity of the reaction medium by the addition of sulfuric acid
had no influence on the conductivity of composites (Table 2). Polypyrrole composites
prepared with peroxydisulfate had always lower conductivity compared with iron(III)
chloride, but the differences were within one order of magnitude and are regarded as
small. The introduction of methyl orange increased the conductivity only marginally with
peroxydisulfate oxidant but significantly with iron(III) chloride in the response to the
conversion of polypyrrole morphology.

3.6. Mechanical Properties

The present method of resistivity determination also allows for the monitoring of the
change of sample thickness during the compression (Figure 8). The sample may be regarded
as fluffy and easy to compress if these dependence in double-logarithmic presentations is
steep. This is the case for polypyrrole alone (the slope −0.284). The introduction of ferrite
led to a marginal reinforcement and the steepness was moderately reduced. Even at high
ferrite loading, the mechanical properties were controlled mainly by polypyrrole matrix.
Ferrite itself behaves as a practically incompressible material (slope −0.029) as expected.
These observations are important for the application in magnetorheological suspensions
where polypyrrole-coated ferrite would be better dispersible in the carrier medium than
ferrites alone.
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3.7. Magnetic Properties

As expected, the highest magnetization 88.6 emu g−1, (Table 3, Figure 9) was achieved
with neat MnZn ferrite. Since polypyrrole itself does not display magnetic properties, the
saturation and remanence magnetization of composite materials should be governed by



J. Compos. Sci. 2024, 8, 373 11 of 14

the amount of ferrite in the sample, which corresponds well with obtained values. From
the coercivity and remanence values and the shape of the curve, it can be seen that the
composites are magnetically soft materials as expected. No significant differences were
observed for coercivity of the individual particles. The coating of ferrite with conducting
polymer does not have any effect on the magnetostatic properties of ferrite cores. The
analogous studies of MnZn ferrite coated with polyaniline [38,48], however, proved that the
formation of a conducting polymer overlayer on the surface of a MnZn ferrite microparticles
modified the character of the frequency dispersion of the magnetic permeability. The
changes in the magnetic properties were due to the change of the boundary conditions of
the microwave field at the interface between the ferrite particle and the polymer coating.
Such effects are likely to occur also with polypyrrole-coated ferrite and they would become
of importance when applied in electromagnetic interference shielding compositions.

Table 3. Coercivity, HC, remanent magnetization, MR, and saturation magnetization, MS, of polypyr-
role composites prepared with various amount of MnZn ferrite in water with ammonium peroxy-
disulfate oxidant.

g, g MnZn Ferrite HC, Oe MR, emu g−1 MS, emu g−1

2 8.85 0.36 45.8

4 9.50 0.52 60.7

6 9.30 0.58 70.2

8 9.16 0.59 73.1

Ferrite 9.88 0.82 88.6

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 12 of 15 
 

 

6 9.30 0.58 70.2 
8 9.16 0.59 73.1 

Ferrite 9.88 0.82 88.6 

-10000 -5000 0 5000 10000
-100

-50

0

50

100

8
6

M
ag

ne
tiz

at
io

n,
 e

m
u 

g−1

Magnetic field, Oe

MnZn ferrite

2

4

 
Figure 9. Magnetization curves of globular polypyrrole deposited on various amounts of ferrite mi-
croparticles 0–8 g per 200 mL of reaction mixture. 

4. Conclusions 
The study demonstrated the feasibility of the coating of manganese-zinc ferrite mi-

croparticles in situ during the oxidation of pyrrole with ammonium peroxydisulfate or 
iron(III) chloride in the presence or absence of methyl orange. The completeness of the 
coating was confirmed by Raman spectroscopy. When compressed to pellets, ferrite cores 
are separated from each other. They are embedded in a polypyrrole matrix, which deter-
mines the conductivity. The conductivity of composites was therefore only moderately 
reduced with an increasing fraction of ferrite and stayed at the level of 10−1 S cm−1. The 
conductivity was higher when iron(III) chloride was used as an oxidant instead of ammo-
nium peroxydisulfate. Methyl orange dye used along with iron(III) chloride oxidant stim-
ulated the growth of polypyrrole nanotubes and increased the conductivity of composites 
to 13–23 S cm−1. The magnetostatic properties were determined by the presence of ferrite 
and the magnetization was proportional to the ferrite content. The hybrid polypyrrole-
coated ferrites were designed as fillers for the electromagnetic interference shielding com-
positions to be analysed in the forthcoming study. 

Author Contributions: M.J.: Methodology, data curation. L.M.: investigation. J.V.: methodology, su-
pervision. J.S.: conceptualization, writing—review and editing. M.T.: validation, methodology. J.P.: 
investigation, data curation. I.K.: methodology, software. All authors have read and agreed to the 
published version of the manuscript. 

Funding:  This research was funded by the Ministry of Education, Youth and Sports of the Czech 
Republic (INTER-EXCELLENCE II LUAUS24032 and DKRVO RP/CPS/2024-28/005) and the Czech 
Science Foundation (22-25734S). 

Figure 9. Magnetization curves of globular polypyrrole deposited on various amounts of ferrite
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4. Conclusions

The study demonstrated the feasibility of the coating of manganese-zinc ferrite mi-
croparticles in situ during the oxidation of pyrrole with ammonium peroxydisulfate or
iron(III) chloride in the presence or absence of methyl orange. The completeness of the coat-
ing was confirmed by Raman spectroscopy. When compressed to pellets, ferrite cores are
separated from each other. They are embedded in a polypyrrole matrix, which determines
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the conductivity. The conductivity of composites was therefore only moderately reduced
with an increasing fraction of ferrite and stayed at the level of 10−1 S cm−1. The conduc-
tivity was higher when iron(III) chloride was used as an oxidant instead of ammonium
peroxydisulfate. Methyl orange dye used along with iron(III) chloride oxidant stimulated
the growth of polypyrrole nanotubes and increased the conductivity of composites to
13–23 S cm−1. The magnetostatic properties were determined by the presence of ferrite and
the magnetization was proportional to the ferrite content. The hybrid polypyrrole-coated
ferrites were designed as fillers for the electromagnetic interference shielding compositions
to be analysed in the forthcoming study.
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