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Abstract: An equibiaxial tension test could be necessary to set up hyperelastic material constants for
elastomers exactly. Unfortunately, very often, only uniaxial tension experimental data are available.
It is possible to use only uniaxial data to compute hyperelastic constants for a hyperelastic model,
but the prediction of behavior in different deformation modes (as is equibiaxial or pure shear) will
not work correctly with this model. It is quite obvious that there is some relation between uniaxial
and equibiaxial behavior for the elastomers. Thus, we could use uniaxial data to predict equibiaxial
behavior. If we were able to predict (at least approximately) equibiaxial data, then we could create
a hyperelastic model usable for the general prediction of any deformation mode of elastomer. The
method of the appropriate processing of experimental data for such prediction is described in the
article and is verified by the comparison with the experiment. The presented results include uniaxial
and equibiaxial experimental data, the created average curve of both the deformation modes, and
the predicted equibiaxial data. Using Student’s t-test, a close coincidence of the real and predicted
equibiaxial data was confirmed.

Keywords: elastomer; hyperelasticity; uniaxial tension; equibiaxial tension; experimental data;
curve processing

1. Introduction

The process by which a stress/strain curve of an elastomer is obtained from a set of
tested specimens is not usually described in detail in the current scientific works. One of
the main motivations of the article is the formulation of a method for the processing of this
type of data (curves or chains of values). Such data processing is not only important for
obtaining the resulting average curves, but it is equally important if we need to compare
the results of several different experiments, especially if we need to use standard statistical
tools for testing the significance of the difference in various results. Without this procedure,
the results are evaluated and compared only subjectively without any objective criteria
and metrics.

The uniaxial tension test only is not sufficient to describe the hyperelastic properties of
elastomers appropriately [1–3]. Using only uniaxial tension input data, the prediction of the
behavior of elastomer in any other deformation modes is uncertain, inexact, and very often
completely unrealistic (for example, a prediction of 100 times higher values than the reality
or even the prediction of the negative values of stress for the positive values of strain), as
published previously in [4,5]. Data from the next two deformation modes (i.e., equibiaxial
tension and pure shear [6,7]) are very important to set hyperelastic material constants
correctly. The importance of these tests of elastomers was published previously [8,9] and
possible misleading errors due to the omission of some deformation modes experiments
are described in [4,10]. Nevertheless, in some situations, we have only uniaxial data, and

Polymers 2024, 16, 2190. https://doi.org/10.3390/polym16152190 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym16152190
https://doi.org/10.3390/polym16152190
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-0204-5240
https://orcid.org/0000-0002-5626-1061
https://orcid.org/0009-0003-7990-8619
https://orcid.org/0000-0003-3918-5084
https://doi.org/10.3390/polym16152190
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym16152190?type=check_update&version=1


Polymers 2024, 16, 2190 2 of 13

we are not able to obtain the experimental results of the next deformation modes. Even in
such cases, it is always better to use this set of accurate uniaxial data together with some
other set of non-experimental approximate equibiaxial data than to use the same set of
uniaxial data alone (as is demonstrated in [5]). In other words, if only uniaxial data are
used, we obtain a hyperelastic material model that describes very accurately behavior in
uniaxial tension but is not able to correctly predict any other type of loading. The goal
of the research and method described in the article is to be able (from uniaxial data only,
again) to obtain a hyperelastic material model that will describe accurately enough and
realistically the behavior in uniaxial tension but also in any other type of loading.

If only uniaxial data are available for the hyperelastic model definition, we have to
ensure that the prediction of the behavior of the other deformation modes will not be unreal.
Such a prediction (i.e., for different deformation modes) will certainly not be absolutely
correct but must be within the presumed approximate limits. A method for setting up these
limits is described in this article. No such method is defined in the field of the mechanics of
elastomers yet, which means that researchers who used only uniaxial experimental data
could simulate only uniaxial tension or (for any other type of loading) they had to perform
experiments of different deformation modes.

The goal is to find a method to determine relevant hyperelastic parameters that can be
used to predict any deformation modes when only uniaxial experimental data are accessible.
To achieve this goal, we have to be able not only to test the material correctly but also to
process the measured data in an applicable form which is the next important object and
benefit of the article.

The basic methods for the testing of elastomers are known and sufficiently de-
scribed [11–17]. The outputs of the tests are not discrete values but the whole curves of
the stress/strain relation (or rather chains of discrete points). There is no problem in using
such data to evaluate hyperelastic model parameters [18–23]. But it is quite complicated to
compare different data of this kind (for example to evaluate the model suitability) using
objective statistical tools to quantify some values describing the size of the difference, the
statistical signification of the difference, and so on.

2. Materials and Methods

The first important thing to mention is that we do not want to use any form of
regression to process the data curves. The reason for this is that these data are measured
as inputs for hyperelastic model parameters determination. Therefore, the final result, i.e.,
the hyperelastic model is the regression of the experimental measurement. Thus, any other
regressions during data processing are not appropriate; on the contrary, we need to work
with the “raw” experimental data or with the mean values of the raw data. But still, they
should be curves (chains of points), even as “mean curves”.

2.1. Material

One hyperelastic material was tested in the uniaxial tension test and in the equibiaxial
tension test. The basic components of the rubber compound of the specimens are natural
and chlorobutyl rubber. This material is used for truck tire construction and the preparation
of a numerical model of the tire is the reason for its study and characterization. The
complete formulation of the rubber compound is presented in Table 1.

The specimens of this one material were tested (ten in uniaxial mode and ten in
equibiaxial mode).
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Table 1. Recipe of tested material.

Ingredients [phr]

NR (KLKRP, Kuala Lumpur, Malaysia) 30
CIIR (ExxonTM, Spring, TX, USA) 70
N660 carbon black (CABOT, Boston, MA, USA) 50
ZnO (WIEHART, Wulzeshofen, Austria) 5
Stearic acid (Evonik, Essen, Germany) 2
RAE oil (PARAMO, Pardubice, Czech Republic) 5
6PPD (Richon, Dalian, China) 2
Sulfur OT33 (Vennok®, Shanghai, China) 2

2.2. Experimental Methods

The uniaxial tension test is in accordance with ISO 37 standard [24]. The equibiaxial
tension test based on the bubble inflation technique was applied [5,25].

2.2.1. Uniaxial Tension Test

The uniaxial tension test was performed at a universal testing machine (Zwick/Roell
1456). The type 1 dumbbell specimens according to ISO 37 [24] were prepared (Figure 1,
Table 2).
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Figure 1. Shape and characteristics of dumbbell test specimen (letter explanations see below in the
Table 2).

Table 2. Characteristics of test specimen type 1—according to ISO 37 [24].

Characteristic [mm]

A—Overall length (min) 115
B—Width of ends 25 ± 1
C—Length of narrow portion 33 ± 2
D—Width of narrow portion 6.2 ± 0.2
E—Transition radius outside 14 ± 1
F—Transition radius inside 25 ± 2

Ten specimens were cut from the same uniformly thick (2 mm) sample material sheet.
The specimen was clamped at the ends and uniaxial loading at a speed of 500 mm/min
was applied. The engineering stress and strain were computed from the applied force and
elongation as follows:

σ = F/S, (1)

and
ε = (l − l0)/l0, (2)

where σ is the engineering stress, F the applied force, S the cross section area of the unloaded
test specimen, ε the strain, l the deformed length, and l0 the initial undeformed length.

The tested specimen is mounted between two pneumatic grips of the universal tensile
testing machine using compressed air. According to ISO 37 [24], the standard grip sepa-
ration rate is set to 500 mm.min−1. As the grips move away from each other, the force is
measured by the load cell, and the stress is computed according to Equation (1).
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To measure the strain, the extensometer is mounted on the test specimen before the test
starts. As the test specimen is stretched, the extensometer grips are moving and measuring
the distance. Then, the strain can be calculated according to Equation (2). The initial length
for the strain measurement is set to 20 mm. Data are recorded online by the testing machine
control system as the stress/strain curves in the form of chains of discrete values at time
intervals of 0.05 s. All the specimens were tested up to the limit of strain: ε = 1.2.

2.2.2. Equibiaxial Tension Test

There are no standards for the equibiaxial testing of elastomers. One of the methods
used for this type of test is the bubble inflation technique [5,25]. A circular flat specimen
clamped at the rim between two rings is inflated using compressed air (Figure 2a). The
specimen is deformed to the shape of a bubble (Figure 2b).
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We can continuously evaluate the stress in the material from the air pressure inside
the bubble and the specimen dimensions as follows:

σ = (p × r)/(2 × t), (3)

where σ is the engineering stress, p is the inflation pressure, r is the curvature radius of
the specimen, and t is the specimen thickness. The precision digital manometer (0.1%
span accuracy) with a range of 0 to 600 KPa was used to measure the pressure inside the
inflated specimen.

The measurement of the thickness of a deformed specimen is very complicated. With
the consideration of material incompressibility, we can express the thickness as follows:

t = t0/λ2, (4)

where t0 is the initial thickness of the specimen. Further, we have to measure the stretch
λ in the pole area of the inflated specimen. Generally, stretch λ is the ratio between the
current (deformed) length l and the initial length l0:

λ = l0/l. (5)

Substituting Equation (4) into Equation (3) we can compute the stress σ as follows:

σ = (p × r × λ2)/(2 × t0). (6)
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To measure stretch λ on the curved surface of the inflated specimen, it is necessary to
track three points in space. The digital image correlation (DIC) principle [26–33] was used
for the stretch measurement. Stereo camera DIC system is able to track point displacement
in a 3D space. A surface with a nonuniform color is necessary for the DIC measurement;
thus, the white speckle pattern was applied on the test specimen (Figure 3).
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Figure 3. Bubble inflation technique—pattern on the test specimen.

Ten circular specimens with a diameter of 90 mm were cut from the same uniformly
thick (2 mm) sample material sheet. The inner diameter of the clamping rings is 50 mm.
The radius r and the stretch λ are computed from the position of the three tracked points on
the bubble-shaped surface of the specimen. Then, using Equations (5) and (6), we can set
up the complete stress/strain curves to describe the equibiaxial behavior of the material.

The speckled white pattern is applied on the surface of every test specimen before the
testing by the spray (Figure 2). Thanks to this, three points (one in the center and the next
two 5 mm on each side) are identified in the stereo DIC software. The positions of these
points are tracked in the 3D space during the test and recorded by the DIC system. As the
positions of points are known during the test, it is possible to determine the parameters of
Equations (5) and (6), i.e., the deformed length l and the curvature radius of specimen r,
and compute the stress σ and stretch λ. Then, substituting Equation (5) to Equation (2), we
obtain strain as follows:

ε = λ − 1. (7)

The Mercury Real-Time tracking system was used as the control DIC system. The sys-
tem is able to process input in real-time and present the results online. Two monochromatic
video cameras with a resolution of 608 × 2048 pixels, pixel size of 5.5 × 5.5 µm, and 25 mm
fixed focal length lenses were used. The cameras were recording the tested specimen at an
angle of 20◦ to each other at a synchronized time rate of 0.05 s. The stress and strain values
were computed by the DIC system from the inputs from the digital manometer and from
cameras and then the stress/strain curves were recorded the same way as in the case of
uniaxial tension in the form of chains of discrete values.
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2.3. Experimental Data Processing and Evaluation

The results of the uniaxial tension test are used as the input for the prediction of
the equibiaxial behavior of a material and the results of the equibiaxial tension test are
used for the verification of the predicted data. Naturally, we want to use more than one
specimen uniaxial test data (i.e., ten specimens in this case) to produce only one predicted
equibiaxial stress/strain curve. Therefore, the first and essential problem to be solved is
how to obtain only one mean curve from more measurements. The resulting curves are in
the form of chains of discrete points in the stress/strain coordinates. But, the horizontal
(strain axis) positions (values) of each measurement (of each point) are different (black
points in Figure 4).
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Figure 4. Example of the experimental data processing (in general coordinates; but the same applies
to the stress/strain data)—average curve determination.

In the first step, the appropriate regular intervals on the horizontal (strain) axis are set
up. In the example in Figure 4, they are values: 0; 2; 4; 6; 8; 10; 12; 14. In the second step, for
each black curve (specimen), the linear interpolation of the stress values (vertical axis values
in the example in Figure 4) of the two nearest stress values to this strain point (0; 2; 4; 6; 8;
10; 12; 14) must be performed (red dots in Figure 4). Now, we have for every strain interval
point (0; 2; 4; 6; 8; 10; 12; 14) on every three black curves always three interpolated (red)
values of the stress directly in the vertical row, which means that only now we can compute
the average value for them, i.e., green point and whole average (green) curve, respectively.

2.4. Method for the Equibiaxial Data Prediction and Evaluation

There is shown the difference between uniaxial and equibiaxial data for common
elastomer in Figure 5. The equibiaxial values will be always higher than the uniaxial,
which is evidently caused by the difference in the boundary conditions for these deforma-
tion modes. Thus, there is some relation between uniaxial and equibiaxial data for each
hyperelastic material. Moreover, this relationship can be different for different of many
hyperelastic materials.
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The goal is to determine this relation as simply as possible. As described above, main
goal of the work is to set up a relevant hyperelastic model if only uniaxial experimental
data are accessible. It means that the accuracy of the relation for the computation of
equibiaxial data is not the final goal, because the final equibiaxial (or any other) behavior
of the examined material will be predicted by the final hyperelastic model to define which
will be used in our predicted equibiaxial curve (as a function of uniaxial data). Generally,
the relation should be in the form of a function:

σBp = f (σU, ε), (8)

where σBp is the predicted equibiaxial stress curve, σU is the experimental average uniaxial
stress curve, and ε is the strain.

In a simpler form, the relation can be independent of the strain and the predicted
equibiaxial stress will depend only on σU. And further, based on the previous exper-
iments [3,4,7–9] and confirmed by very close coincidence with the current experiment
(presented below in the article in the Results), for most of the elastomers, this relation can
be determined as a linear function:

σBp = c × σU, (9)

where c is the constant ratio between the equibiaxial and uniaxial stress values. To evaluate
the best value of c for a specific rubber compound, we will use the equibiaxial experimental
data. But later, when the general values of c for common rubber compounds will be
determined (as a material parameter), it will be possible to use only equibiaxial data to set
up correct hyperelastic material constants.

If the equibiaxial experimental data are available, we can use the least squares method
to find the optimal value of the c constant. If we are using N interpolation points (on the
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strain axis) for the function minimization, the sum of the squares of the residuals of the
average experimental and predicted equibiaxial values is evaluated by the function of c:

S(c) = Σ [(σBi − c σUi)
2], (10)

and we are searching for the value of the c constant which minimizes the S(c) function.
Eleven interpolation points (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110% of strain) were
used for the c optimization.

To evaluate the coincidence of the predicted equibiaxial data with the results of
the equibiaxial experiments, the single sample Student’s t-test statistical method is used.
Similarly, like for c constant optimization, only some interpolation strain points were
selected for this evaluation; again, they are (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110%
of the strain). But, it is not needed to select the same points as for S(c) minimization. It
is possible to test coincidence absolutely independently of the S(c) minimization in the
different points. In this test, the null hypothesis is that the predicted value of equibiaxial
stress in the selected interpolation point is the same as the mean of the experimental values
in the same interpolation point. The alternative hypothesis says that the mean and the
predicted value are not the same. The p-values of the t-test are computed to evaluate the
coincidence. If this value is higher than 0.05, we are not rejecting the null hypothesis that
the predicted equibiaxial value and the mean of the experiment are the same.

3. Results
3.1. Uniaxial and Equibiaxial Tension Experiments

The uniaxial tension test experimental data of the ten specimens (of the same elastomer)
together with the average curve are shown in Figure 6. The average curve was obtained by
the method described in Section 2.3. The raw experimental stress data of each specimen
were interpolated to every 1.0% interval of strain and from the interpolated values were
computed the average points (in 1.0% strain intervals) to create an average curve.
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The equibiaxial data, shown in Figure 7, were processed by the same method as
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3.2. Equibiaxial Data Prediction and Evaluation

The c constant for Equation (9) was computed using Equation (10). The computed
sum of the squares of the residual S against the c value is shown in Figure 8.
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The minimization of the sum of the squares occurs in the c value = 1.55. This value
is valid for the material listed in Table 1 and also for the given strain range (0–120%).
Substituting this constant value in Equation (9)

σBp = 1.55 σU, (11)

we obtain the equibiaxial predicted curve (Figure 9). Together with the predicted and
average equibiaxial curve, the interpolated experimental equibiaxial data of all ten spec-
imens for 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110% of strain are shown in Figure 9.
The single sample Student’s t-test of the shown experimental points means against the
predicted equibiaxial values (in each of the eleven integration points mentioned above)
and the p-values of the t-test are presented in Table 3.
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Table 3. The p-values of the t-test of the experimental and predicted equibiaxial data.

Strain Point
[%]

Equibiaxial
Average Stress

[MPa]

Coefficient of
Variation

Equibiaxial
Predicted Stress

[MPa]

p-Value

10 0.479 0.130 0.440 0.074
20 0.711 0.132 0.703 0.777
30 0.895 0.126 0.908 0.725
40 1.064 0.122 1.102 0.372
50 1.235 0.120 1.287 0.300
60 1.428 0.122 1.474 0.420
70 1.633 0.104 1.668 0.530
80 1.861 0.087 1.872 0.831
90 2.097 0.083 2.086 0.844

100 2.344 0.081 2.310 0.583
110 2.602 0.083 2.539 0.382

4. Discussion

The computed average curves (Figures 6 and 7) show the typical “S” shape of elas-
tomers. The optimal c constant value (1.55) was found for the examined material. If we use
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the linear function (Equation (11)) of σU for equibiaxial data prediction, the coincidence
of the predicted data with average equibiaxial data will not be absolutely exact (Figure 9),
but it is appropriate enough (which is proved statistically by the Student’s t-test). The
coincidence of the real and predicted equibiaxial data was tested in the single sample
Student’s t-test. The p-values in Table 3 confirm that (at confidence level α = 0.05) we are
not rejecting the null hypothesis that the predicted equibiaxial value and the mean of the
experiment are the same. The high values of the p-values (except the 10% strain point)
confirm a very close coincidence.

In spite of this sufficient result, there are more options how to predict equibiaxial data
more exactly. A more complex function for the prediction could be used (Equation (8)). But,
a more exact prediction is not the goal of the research. As was explained in the Introduction
Section, we need to delimit the range of the equibiaxial data for the set up of the appropriate
hyperelastic model in the next step (which is not the subject of this article), and finally,
the coincidence of the equibiaxial curve from the hyperelastic model with real material
behavior is the most important.

5. Conclusions

It was proved that the simple linear function of σU can be used to predict appropriate
data, usable to set up hyperelastic models even when real equibiaxial experiment data are
not accessible. The method for experimental data processing, especially for creating an
average stress/strain curve, was presented and the prediction function for the examined
elastomer was optimized.

The main goal of the research is to be able to predict the equibiaxial behavior of
elastomers only from uniaxial experiments. Therefore, the next step in the research will be
searching for relations between the uniaxial/equibiaxial ratio and other generally known
and usually measured properties (hardness, strength, material composition, etc.).

The next important and very useful step for the broader utilization of the presented
method should also be to create a database of elastomers for which we know the uni-
axial/equibiaxial relations. The described method for the mathematical formulation of
prediction models and determining their constants can be applied to any available data
(other elastomers presented in the literature, for example [2,3,18–23,25]) or any data mea-
sured in experimental testing. The method (the process of creating an auxiliary equibiaxial
data set) is not limited by the type of elastomer, hyperelastic model, or range of loading
(stress or strain). These are only the limitations for the value of the final constant of the
prediction model.

Investigation as many other elastomers as possible should follow this initial investiga-
tion of ours, which could lead to the generalization of mathematical formulation and its
constants, i.e., determining the limits of its values and the elimination of the limitations
described above.
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10. Keerthiwansa, R.; Javořík, J.; Rusnáková, S.; Kledrowetz, J.; Gross, P. Hyperelastic Material Characterization: How the Change in

Mooney-Rivlin Parameter Values Effect the Model Curve. Mater. Sci. Forum 2020, 914, 265–271. [CrossRef]
11. Brown, R. Physical Testing of Rubber; Springer: New York, NY, USA, 2006; 388p. [CrossRef]
12. Smith, L.P. The Language of Rubber: An Introduction to the Specification and Testing of Elastomers; Butterworth-Heinemann: Oxford,

UK, 1993; 257p.
13. Doman, D.A.; Cronin, D.S.; Salisbury, C.P. Characterization of polyurethane rubber at high deformation rates. Exp. Mech. 2006, 46,

367–376. [CrossRef]
14. Österlöf, R.; Wentzel, H.; Kari, L. An efficient method for obtaining the hyperelastic properties of filled elastomers in finite strain

applications. Polym. Test. 2015, 41, 44–54. [CrossRef]
15. Luo, H.; Zhu, Y.; Zhao, H.; Ma, L.; Zhang, J. Equibiaxial Planar Tension Test Method and the Simulation Analysis for Hyperelastic

EAP Membrane. Adv. Polym. Technol. 2023, 2023, 7343992. [CrossRef]
16. Xiao, R. A Review of Cruciform Biaxial Tensile Testing of Sheet Metals. Exp. Tech. 2019, 43, 501–520. [CrossRef]
17. Fujikawa, M.; Maeda, N.; Yamabe, J.; Kodama, Y.; Koishi, M. Determining Stress–Strain in Rubber with In-Plane Biaxial Tensile

Tester. Exp. Mech. 2014, 54, 1639–1649. [CrossRef]
18. Marano, C.; Vangosa, F.B.; Andena, L.; Frassine, R. (Eds.) Constitutive Models for Rubber XII: Proceedings of the 12th European

Conference on Constitutive Models for Rubber (ECCMR 2022); CRC Press: Milano, Italy, 2022; 524p.
19. Beda, T. Modeling hyperelastic behavior of rubber: A novel invariant-based and a review of constitutive models. J. Polym. Sci.

Part B Polym. Phys. 2007, 45, 1713–1732. [CrossRef]
20. Mirzapour, J. A micro-mechanically-based constitutive model for hyperelastic rubber-like materials considering the topological

constraints. Int. J. Solids Struct. 2023, 275, 112299. [CrossRef]
21. Guo, Z.; Sluys, L.J. Constitutive modelling of hyperelastic rubber-like materials. Heron 2008, 53, 109–132.
22. Kim, H.G. A comparative study of hyperelastic and hypoelastic material models with constant elastic moduli for large deformation

problems. Acta Mech. 2016, 227, 1351–1362. [CrossRef]
23. Mollaee, S.; Budgett, D.M.; Taberner, A.J.; Nielsen, P.M.F. Hyperelastic constitutive model parameters identification using

optical-based techniques and hybrid optimisation. Int. J. Mech. Mater. Des. 2024, 20, 233–249. [CrossRef]
24. ISO 37; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. International Organization for

Standardization: Geneva, Switzerland, 2017.
25. Reuge, N.; Schmidt, F.M.; Le Maoult, Y.; Rachik, M. Elastomer biaxial characterization using bubble inflation technique. I:

Experimental investigations. Polym. Eng. Sci. 2001, 41, 522–531. [CrossRef]
26. Sutton, M.A.; Orteu, J.J.; Schreier, H. Image Correlation for Shape, Motion and Deformation Measurements. Basic Concepts, Theory and

Applications; Springer: New York, NY, USA, 2009; 322p. [CrossRef]
27. Ab Ghani, A.F.; Ali, M.B.; Dhar Malingam, S.; Mahmud, J. Digital Image Correlation (DIC) Technique in Measuring Strain Using

Opensource Platform Ncorr. J. Adv. Res. Appl. Mech. 2016, 26, 10–21.
28. Castillo, E.R.; Allen, T.; Henry, R.; Griffith, M.; Ingham, J. Digital image correlation (DIC) for measurement of strains and

displacements in coarse, low volume-fraction FRP composites used in civil infrastructure. Compos. Struct. 2019, 212, 43–57.
[CrossRef]

29. Khoo, S.W.; Karuppanan, S.; Tan, C.S. A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital
Image Correlation. Metrol. Meas. Syst. 2016, 23, 461–480. [CrossRef]

30. Jerabek, M.; Major, Z.; Lang, R.W. Strain determination of polymeric materials using digital image correlation. Polym. Test. 2010,
29, 407–416. [CrossRef]

31. Grytten, F.; Daiyan, H.; Polanco-Loria, M.; Dumoulin, S. Use of digital image correlation to measure large-strain tensile properties
of ductile thermoplastics. Polym. Test. 2009, 28, 653–660. [CrossRef]

https://doi.org/10.5254/1.3538289
https://doi.org/10.1111/j.1475-1305.2006.00257.x
https://doi.org/10.17222/mit.2017.085
https://doi.org/10.17222/mit.2019.161
https://doi.org/10.4028/www.scientific.net/MSF.919.292
https://doi.org/10.4028/www.scientific.net/MSF.994.265
https://doi.org/10.1007/0-387-29012-5
https://doi.org/10.1007/s11340-006-6422-8
https://doi.org/10.1016/j.polymertesting.2014.10.008
https://doi.org/10.1155/2023/7343992
https://doi.org/10.1007/s40799-018-00297-6
https://doi.org/10.1007/s11340-014-9942-7
https://doi.org/10.1002/polb.20928
https://doi.org/10.1016/j.ijsolstr.2023.112299
https://doi.org/10.1007/s00707-015-1554-5
https://doi.org/10.1007/s10999-023-09673-6
https://doi.org/10.1002/pen.10749
https://doi.org/10.1007/978-0-387-78747-3
https://doi.org/10.1016/j.compstruct.2019.01.024
https://doi.org/10.1515/mms-2016-0028
https://doi.org/10.1016/j.polymertesting.2010.01.005
https://doi.org/10.1016/j.polymertesting.2009.05.009


Polymers 2024, 16, 2190 13 of 13

32. Quanjin, M.; Rejab, M.R.M.; Halim, Q.; Merzuki, M.N.M.; Darus, M.A.H. Experimental investigation of the tensile test using
digital image correlation (DIC) method. Mater. Today Proc. 2020, 27, 757–763. [CrossRef]

33. Górszczyk, J.; Malicki, K.; Zych, T. Application of digital image correlation (DIC) method for road material testing. Materials 2019,
12, 2349. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.matpr.2019.12.072
https://doi.org/10.3390/ma12152349

	Introduction 
	Materials and Methods 
	Material 
	Experimental Methods 
	Uniaxial Tension Test 
	Equibiaxial Tension Test 

	Experimental Data Processing and Evaluation 
	Method for the Equibiaxial Data Prediction and Evaluation 

	Results 
	Uniaxial and Equibiaxial Tension Experiments 
	Equibiaxial Data Prediction and Evaluation 

	Discussion 
	Conclusions 
	References

