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ABSTRACT This paper focuses on the use of wearable sensors to acquire and process motion data, which
is essential for monitoring physiological movement and identifying gait disorders. It is particularly relevant
in pediatrics, neurology, and rehabilitation. The research evaluates body motion symmetry in children using
accelerometric data, taking into account factors such as age, diagnosis, and gender. Signals were recorded
from 35 children (average age 10.8 years) using mobile sensors and were analyzed using digital signal
processing techniques and classification methods. The proposed methodology includes data acquisition by
smartphone sensors, wireless data export to a remote drive, and data processing through a graphical user
interface. The highest classification accuracy of walking features, at 92.0%, was achieved with a two-layer
neural network. The findings underscore the effectiveness of these tools in rehabilitation, fitness monitoring,
and neurological studies.

INDEX TERMS Computational intelligence, mobile sensors, accelerometers, physical activity monitoring,
gait symmetry, pediatric motion disorders.

I. INTRODUCTION
The classification of pediatric gait symmetry involves a
detailed analysis and comparison of various gait parameters
to identify the extent of symmetry or asymmetry in a
child’s walking pattern. Symmetry is considered a sign
of physiological and healthy movement, while pronounced
asymmetries often signal underlying pathological issues [1].
Gait and balance assessments typically rely on data from
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accelerometric sensors, which have proven effective in
evaluating gait disorders and concussion symptoms [2], [3],
[4], [5]. In some studies, this involves examining differences
in muscular activity between the left and right legs during
walking [6].

The process of detecting gait irregularities in children using
wearable accelerometric sensors centers around extracting
key features from the data. These features may include step
length, step width, durations of stance and swing phases,
stride time, cadence, among others. The significance of these
studies is underscored by rapid advancements in sensor
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technology [7], which have broad applications in physical
activity analysis [8], [9], [10], rehabilitation, sports [11], [12],
and health monitoring [13], [14], [15]. Computational intel-
ligence techniques, including machine learning algorithms
and neural networks, are frequently employed to classify and
understand gait disorders. These algorithms are trained on
labeled datasets where gait symmetry has been established,
enabling them to recognize patterns and predict outcomes in
new data.

Evaluating gait irregularities involves interpreting data
to understand gait symmetry patterns in pediatric subjects
across different physiological measures. The effectiveness
of the classification models is assessed using metrics such
as accuracy, sensitivity, specificity, and F1-score. Cross-
validation and testing on independent datasets are essential
for ensuring the model’s robustness and generalizability.
This analytical process can highlight potential gait anomalies
or asymmetries that may require further examination or
intervention.

Assessing gait symmetry in children requires a thorough
examination and comparison of various gait parameters to
determine the level of symmetry or asymmetry in their walk-
ing patterns. Symmetry typically reflects normal, healthy
movement, while notable asymmetries may indicate underly-
ing health issues. Gait and balance evaluations often use data
from accelerometric sensors [16], which have been effective
in diagnosing gait abnormalities and concussion symptoms.
In some research contexts, this evaluation includes a detailed
analysis of variations in muscular activity [6] between the left
and right legs during walking.

The application of computational intelligence to process
gait features, alongside data from accelerometric sensors,
has become an increasingly important tool for efficiently
classifying pediatric gait symmetry. This approach yields
critical insights that are instrumental in clinical diagnosis
and the formulation of treatment strategies. Additionally,
gait assessments can be enhanced by three-dimensional,
anatomically-based measurements of joint motion, providing
a more comprehensive understanding of gait dynamics [17].
This multidimensional approach to gait analysis enables a
more nuanced and accurate identification of gait irregu-
larities, offering significant benefits for both clinical and
research applications in pediatric healthcare.

The assessment of gait symmetry in pediatric populations
involves a nuanced approach that considers various gait
parameters and the use of microelectromechanical (MEMS)
sensors [18], [19]. The determination of gait symmetry is
not standardized and can vary depending on the research or
clinical context, as well as the specific gait parameters being
evaluated. This variability requires a tailored approach in
which researchers and clinicians select gait parameters based
on their relevance to the particular condition under investiga-
tion or the clinical needs for accurate diagnosis and effective
treatment planning. In-depth studies often focus on the
analysis of joint angles, using data gathered during walking
on force plates and employing motion capture systems. These

studies typically involve both direct and inverse kinematics to
evaluate differences in the kinematic parameters of pediatric
gait [20], [21]. Some studies utilize inertial measurement
units (IMU) for motion analysis, focusing on the dynamic
detection of joint angles during walking and stair climbing.
These methods involve attaching sensors at specific locations
on the body to measure movements and calculate symmetry
indices after reducing tissue artifacts.

Advancements in wearable technology for human motion
and posture recognition are now widely studied. The
review [22] highlights progress in sensor monitoring indi-
cators, system design, and the importance of factors such as
data security, wearing comfort, and durability. An extensive
survey of the state-of-the-art in wearable sensor technol-
ogy for gait, balance, and range of motion analysis is
presented in [23]. These studies emphasize the importance
of quantitative methods for assessing patient progress and
early diagnosis of movement disorders, showcasing various
algorithms and evaluation metrics used in wearable sensor
systems.

The mathematical analysis of motion data encompasses
a broad methodology that includes general signal process-
ing [24], [25], machine learning, and both time-frequency
and time-scale analyses of signals. A particular emphasis
is placed on the use of computational intelligence for the
extraction, evaluation, and classification of signal features.
This approach allows for a more detailed and precise under-
standing of gait patterns, facilitating better diagnosis and
treatment of gait abnormalities in children. The integration
of these advanced methodologies enhances clinicians’ and
researchers’ ability to discern subtle variations in pediatric
gait, thereby contributing tomore effective and individualized
patient care.

This paper outlines the use of accelerometers [26], [27],
[28], [29] and the Global Navigation Satellite System
(GNSS) [30] for analyzing the walking symmetry of children
across various ages and those with walking disorders. These
analyses are performed using wearable sensors embedded
within mobile phones [31], [32], [33], which are positioned
on the body as illustrated in Fig. 1, along with the
proposed settings for data acquisition and implementation
of wireless communication links. The focus of this project
is to monitor pediatric walking patterns [34], [35], [36],
[37], assess their symmetry, and identify potential gait
disorders in a diverse group of children, differentiated by age,
gender, and Body Mass Index (BMI). The advantage of the
proposed methodology lies in the use of common smartphone
sensors and the ability to conduct walk analyses in natural
conditions. However, drawbacks include the need for an
internet connection, access to a remote Matlab drive, and the
possible requirement for detailed gait analysis in specialized
laboratories equipped with more sophisticated sensors.

The examination of gait patterns has been used to diagnose
many health conditions in clinical environments and gait
laboratory settings. Symmetry is often considered a sign
of physiological and healthy movement, although there
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FIGURE 1. Principle of motion data acquisition during walking tests presenting: (a) initialization of sensors and conducting a
walking experiment with the recording of accelerometric and GNSS positioning data, (b) the use of mobile Matlab on a
smartphone for data recording and wireless export to a remote drive, (c) evaluation of the symmetry coefficient on the
smartphone using the remote drive, and (d) a graphical user interface for detailed data analysis, which allows for the presentation
of time-domain accelerometric data, a GNSS record of walk positioning, evaluation of gait frequency components, and the
distribution of gait features evaluated separately from the left and right legs using data stored on the remote drive.

is no commonly accepted method for quantifying gait
symmetry [1]. This study contributes to research in the
use of portable systems and remote data processing for
near-clinical or community-based assessments. The paper’s
objectives include (i) the computational analysis of frequency
components recorded on the left and right legs duringwalking
in real-world conditions and the proposal of a combined sym-
metry coefficient, (ii) the implementation of smartphones,
communication links, and the mobile Matlab computational
environment, (iii) immediate data processing by the proposed
algorithms using remote access to data on the Matlab Drive,
and (iv) the implementation of the proposed graphical user
interface (GUI) for detailed data analysis. The current study
aims to quantify walking patterns using accelerometric data
from both healthy and unhealthy children.

The results highlight a synergy between traditional
diagnostic methods and mathematical techniques for pro-
cessing signals obtained from appropriate sensors. These
sensors are effective in both clinical settings and real-
world conditions [38], [39]. This innovative approach to
gait analysis offers pediatric neuropsychologists a variety of
metrics for the quantitative assessment of gait in spectral and
spatial domains [40].

The study elucidates the efficacy of utilizing wearable
sensors during natural walking as a feasible substitute for
conventional treadmill-based exercises typically employed
in gait monitoring. Healthcare professionals can conduct
various tests to ascertain the nature of gait abnormalities.
Such abnormalities, manifesting as alterations in walking
patterns, may arise from injuries and various medical
conditions. Factors impacting the brain, spinal cord, legs,
or feet can influence gait, altering its patterns and symmetry.

This research contributes to the field of accelerometric signal
analysis, aiming at the detection of walking disorders. It plays
a crucial role in enhancing the diagnosis and treatment of
the underlying causes of gait abnormalities. The applications
of this methodology can be extended and generalized
across various fields, including neurology, rehabilitation,
engineering, and robotics [41], [42], [43].

The rest of the paper is organized as follows: Section II
describes the proposed methodology, comments on data
acquisition, and summarizes the signal processing methods.
Section III presents the proposed graphical user interface and
the results of walk symmetry analysis. Section IV contains the
discussion, and SectionV concludeswith remarks on possible
future research.

II. METHODS
The dataset consists of data captured by wearable sensors
within a smartphone, including a GNSS receiver and a
three-axis accelerometer. The GNSS receiver records ter-
restrial data such as longitude, latitude, and altitude. All
procedures involving human participants complied with the
ethical standards of the institutional research committee and
adhered to the 1964 Helsinki Declaration and its subsequent
amendments.

The proposed research flowchart for classifying gait
symmetry in pediatric walking usingwearable accelerometric
sensors, as presented in Fig. 1, involves the following steps:

(a) Initialization of the sensors within the smartphone.
(b) Wireless export of accelerometric data recorded by the

smartphone to a remote drive using internet communi-
cation links.
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(c) Evaluation of the symmetry coefficient on the smart-
phone using data recorded on the remote drive.

(d) Detailed processing of accelerometric signals stored
on the remote drive using the proposed graphical user
interface.

This methodology employs wearable sensors and implements
them through smartphone technology.

TABLE 1. Description of individuals (Ind.), their diagnosis (Diag.), and the
symmetry index evaluated in the time (Sym1) and frequency (Sym2)
domains from accelerometric signals for a group of 35 children.

A. DATA ACQUISITION
The study included 35 children, consisting of 20 boys and
15 girls, ranging in age from 3 to 15 years. The mean age
of the participants was 10.8 years, with a standard deviation
of 2.78 years. Detailed information is presented in Table 1,
which includes data for both the 25 healthy children and the
10 children diagnosed with various types of motion disorders
by experiencedmedical specialists. The experiments were not
constrained by time limits; however, the walking trajectory
for all participants was approximately 400 meters in length
to maintain consistency across the study.

Figure 1 illustrates the system setup and the placement
of the accelerometric sensor on the body. The smartphone,
serving as both the GNSS receiver and the accelerometric

data acquisition sensor, was attached in a vertical position
on the left or right leg, with the display facing forward [29].
Accelerometric data were captured using mobile Matlab
2024a, recording at a sampling frequency of 100 Hz.

This analysis encompasses 35 experiments, all conducted
in real-world settings. The data recorded during each
experiment were promptly transmitted to Matlab Drive after
each walk. The algorithm, operating via remote Matlab
cloud computing, then displayed preliminary results on the
mobile phone’s screen, as shown in Fig. 1(c). These methods
facilitated the immediate verification of the experiments and
a preliminary evaluation of the symmetry coefficient.

Detailed descriptions of the observations can be found on
IEEE DataPort (dx.doi.org/10.21227/f0hc-bw59) for further
investigation. This repository contains (i) all positioning and
accelerometric signals used in the present study, (ii) algo-
rithms for wireless data acquisition using the smartphone
sensors and their recording onMatlab Drive through commu-
nication links, (iii) a graphical user interface for detailed data
analysis and classification, and (iv) a graphical video abstract
of the paper.

B. SIGNAL PROCESSING
Data processing procedures are intrinsically linked to the
characteristics of the sensors used for data acquisition. The
database of records was composed of both accelerometric
and GNSS signals captured by sensors within the mobile
phone. This data served two primary purposes: the immediate
analysis of body motion and the visualization of walking
positions in real-world environments. Additional analyses
were conducted to identify turning points, allowing for a
more comprehensive examination of all records. Generally,
signal de-noising and the extraction of features in both time
and frequency domains are common challenges encountered
during the detailed processing stage.

Accelerometric data for each experiment, denoted as l,
were captured by tri-axial sensors positioned on specific
parts of the body (left leg and right leg). This data
generated three sequences {sx(l, n), sy(l, n), sz(l, n)}

L(l)−1
n=0 for

each location. Typically, the modulus of these sequences for
n = 0, 1, · · · ,L(l) − 1 was calculated using the following
relation:

s(l, n) =

√
sx(l, n)2 + sy(l, n)2 + sz(l, n)2 (1)

to eliminate inaccurate positions of the accelerometric sensor,
and to refine data for further processing.

Signals in the time domain were analyzed using statistical
methods to describe M1 features {FL(l, r),FR(l, r)}M1

r=1
associated with the left and right legs, respectively, for each
experiment l. In this instance, M1 = 2, and the two features
analyzed were the mean and the standard deviation.

An alternative analysis was conducted in the frequency
domain. The mean value of the observed signal for each
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experiment l was calculated using the following relation:

s̄(l) =
1
L(l)

L(l)∑
i=1

s(l, i) (2)

and the short-time discrete Fourier transform was then
applied to evaluate:

S(l, k) =

L(l)−1∑
n=0

(s(l, n) − s̄(l)) e−j k n 2 π/L(l) (3)

for k = 0, 1, · · · ,L(l) − 1. The proposed GUI in Fig. 2
present spectrograms of the accelerometric signals for the left
and right legs, respectively, for the selected individual.

The use of spectral-domain features required the evaluation
of the relative power E(l) for experiment l in the frequency
band ⟨fc1, fc2⟩:

E(l)=

∑
k∈8w

|S(l, k)|2∑L(l)/2
k=0 |S(l, k)|2

(4)

where 8w represents the set of indices for the frequency
components fk within the range ⟨fc1, fc2⟩. In cases where
M2 = 2 frequency features are considered, the relative
power in two frequency bands, specifically ⟨1, 10⟩ Hz and
⟨10, 20⟩ Hz, can be selected to determine additional spectral
features {FL(l, r),FR(l, r)}

M1+M2
r=M1+1 associated with the left

and right legs, respectively. The frequency-domain features
include relative power within the same frequency bands,
chosen individually for both the left and right legs.

The symmetry index, based on the commonly used
methodology, can then be calculated for each experiment l
and feature r using the following relation:

C1(l, r) =
1
2
FL(l, r) − FR(l, r)
FL(l, r) + FR(l, r)

100 (5)

For each pair of gait parameters, this is done to quantify
the similarity between the left and right sides of the body.
To incorporate all features, where M = M1 + M2, for each
experiment l, a new criterion was proposed. The alternative
criterion for a single experiment l, encompassing all features
r , was evaluated using the proposed relation:

C(l) =

√√√√ 1
M

M∑
r=1

(C1(l, r))2 (6)

Signal features were assessed for the entire duration of
experiment l as well as for its Q subwindows to facilitate a
more detailed analysis of each experiment.

There is potential to integrate time-domain and frequency-
domain features, as illustrated in Fig. 1(c), which displays
immediate preliminary results on the smartphone screen. Var-
ious statistical features and functional transforms, including
wavelet transforms [44], can be employed for more advanced
classification approaches.

Common computational tools used for data analysis
include specifying pattern vectors, associated target values,
and optimizing the proposed mathematical model for the

segmentation and classification of (multichannel) signal
components. The classification ofQ signal segments requires
the creation of pattern and target matrices during the learning
phase to enhance the mathematical model. Analyzing its
coefficients facilitates the model’s application in the sub-
sequent classification of unknown pattern vectors, with the
probability of class membership being precisely calculated.

All signal segments correspond to sets of column feature
vectors {p1,p2, . . . ,pj, . . . ,pQ} and associated target classes
{T1,T2, . . . ,Tj, . . . ,TQ}, which are either determined by a
medical expert or derived from measurement conditions (for
example, specifying measurements on the right and left legs,
respectively, in this particular case). Each feature vector
{pj}

Q
j=1 comprises R features {p(i, j)}Ri=1, forming the feature

matrix PR,Q.
Common algorithms used for signal segment classification

include support vector machines, Bayesian methods, and
neural networks. The mathematical model, optimized for the
training dataset, is then tested to assess its generalization
capabilities and effectiveness in classification during practi-
cal implementation.

The k-fold cross-validation method is frequently employed
to validate the final model and to determine the proportion
of incorrectly classified target classes. In this method, one of
the k folds of the original dataset forms the test set, while the
remaining data is used for model optimization. In this paper,
we used the 10-fold cross-validation method.

The evaluation of classification results involved analyzing
the two-class receiver operating characteristic (ROC) curve,
using TP, FN , FP, and FN to identify the number of true
positives, false negatives, false positives, and false negatives.
The ROC analysis is used to calculate the following metrics:

• The sensitivity (also known as the True Positive Rate
or Recall), defined as the proportion of actual positives
that are correctly identified by themodel, indicating how
well the model can identify true positives:

TPR =
TP

TP+ FN
(7)

• The specificity (also known as the True Negative Rate),
defined as the proportion of actual negatives that are
correctly identified by the model, indicating how well
the model can identify true negatives:

TNR =
TN

TN + FP
(8)

• Accuracy, defined as the proportion of total correct
predictions (both true positives and true negatives) out of
all predictions made by the model, providing an overall
measure of how well the model performs across both
classes:

AC =
TP+ TN

TP+ TN + FP+ FN
(9)

III. RESULTS
Data acquisition was conducted using Mobile Matlab on
a smartphone, utilizing its built-in sensors. The proposed
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algorithm enabled immediate preliminary processing of the
data recorded on Matlab Drive, with results displayed as
illustrated in Fig. 1(c). The implemented algorithm, designed
as a general routine applicable both on the smartphone and on
a personal computer, is accessible through the IEEE DataPort
mentioned above. An internet connection was essential for
this type of data acquisition and processing.

Figure 1(d) illustrates the route visualization for accelero-
metric data acquisition. Both GNSS and accelerometric
data were captured using Mobile Matlab, and the devel-
oped algorithm assessed the symmetry coefficient for both
time-domain and spectral-domain data after each experiment.
This is presented in Fig. 1(c) for a selected individual.
The proposed graphical user interface (GUI) for analyzing
data recorded by mobile accelerometric sensors is shown in
Fig. 2. It facilitates data processing in both the time and
spectral domains, with features evaluated for the right and left
sides of the body, including the calculation of the symmetry
coefficient.

FIGURE 2. The proposed graphical user interface for analysis of data
recorded by mobile accelerometric sensors and their processing both in
the time and spectral domains showing features for the right and left side
of the body.

The experimental dataset consisted of 35 children, both
boys and girls, and was utilized for a detailed study of
gait symmetry disorders. The symmetry coefficient was
calculated based on two features: the standard deviation of
accelerometric data recorded on the right and left legs and the
mean energy in the frequency range of ⟨1, 10⟩ Hz, as defined
in Eq. (6). These values were assessed within a selected set
of 50 subwindows.

The preprocessing stage included the detection and omis-
sion of segments containing significant errors. The criterion
for exclusion was the distance of features from their mean
values; segments where this distance exceeded three times
the standard deviation were removed from further analysis.
The iterative repetition of this process [33] resulted in the
elimination of 6.77% of subwindows across all experiments.

FIGURE 3. Symmetry coefficients of 35 individuals (comprising 20 boys
and 15 girls) with its values (a) for 25 healthy children with prevailing
symmetry walking patterns and (b) for 10 children with a medical
diagnosis that may cause asymmetric walking.

The results of all experiments are summarized in Table 1,
with symmetry coefficients evaluated by Eq.(5) presented
in the last two columns. The values Sym1 are based on
time-domain features (mean and standard deviation), while
the values Sym2 utilize frequency-domain features evaluated
by Eq. (4). Mean values of these symmetry coefficients are
depicted in Fig. 3. Figure 3(a) shows the results for 25 healthy
children, most of whom exhibited predominantly symmetric
walking. In contrast, Fig. 3(b) presents the symmetry
coefficients for 10 children with medical diagnoses that
could lead to asymmetric walking. Most individuals in the
group identified as having potential causes for asymmetric
walking exhibited symmetry coefficients greater than 3.0.
This observation was made even though some healthy
children also displayed a higher coefficient of asymmetry.
This variation can be attributed to natural factors and
their uncoordinated walking patterns, underscoring the need
for further medical investigation. In contrast, most healthy
children had coefficients lower than this threshold, with 6 of
them (24% of the healthy group) having coefficients below 1.

Figure 4 illustrates the relationship between the sym-
metry coefficient and BMI index for healthy boys and
girls, as outlined in Table 1. Generally, there is a direct
proportionality between the increasing BMI index and the
symmetry coefficient for both boys and girls, with positive
line slopes of 0.027 and 0.029, respectively. The average
gait symmetry coefficient for healthy normosthenic children
(W01–W21) with a BMI lower than 20 [kg/m2] is 1.7,
compared to healthy obese children (W22–W35)who have an
average value of 2.7. These findings align with the observed
connection between weight distribution and gait speed in
children with motion disorders, as discussed in previous
studies [45], [46].

The distribution of time and spectral domain features
differs between symmetric and asymmetric walking. Figure 5
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FIGURE 4. Correlation between the symmetry coefficient and BMI index
in the set of (a) healthy boys and (b) healthy girls, as detailed in Table 1.

FIGURE 5. Comparison of the distribution of time and spectral domain
features of (a) the predominantly symmetric and (b) predominantly
asymmetric walk of the selected individual, along with the centers of
both clusters and regions of c times the standard deviations for
c = {0.5, 1.0, 1.5}.

FIGURE 6. Classification of walking patterns for prevailing asymmetric
walking by (a) the support vector machine method, (b) the Bayes method,
and (c) the neural network method.

displays these features for a selected healthy individual
with predominantly symmetric walking and an unhealthy
individual with predominantly asymmetric walking. This
figure also includes the centers of both clusters and regions
corresponding to c times the standard deviation, where c

takes values of 0.5, 1.0, and 1.5. Detailed information about
all 35 individuals is summarized in Table 1. The features
represent the relative power in the ⟨1, 10⟩ Hz range and the
standard deviation of observed accelerometric data. Notably,
the characteristics of asymmetric walking formmore compact
clusters that are significantly better separated than those
associated with symmetric walking.

Figure 6 illustrates the classification of walking patterns
for asymmetric walking using the support vector machine,
Bayesian method, and a neural network with a two-layer
structure that includes sigmoidal and softmax transfer
functions. This classification is based on the frequency
and time domain features of a selected individual. The
results suggest that mathematical tools have the potential
to detect asymmetric walking patterns. Both time-domain
and frequency-domain features related to accelerometric data
occupy distinct regions, facilitating their separation.

TABLE 2. The accuracy (AC [%]), the cross-validation error (CV), specificity
(TNR [%]), and selectivity (TPR [%]) of symmetric and asymmetric walking
classification by support vector machine (SVM), Bayesian, and two-layer
neural network methods using two features specified as the power in the
selected frequency band and the associated standard deviation of
accelerometric data.

FIGURE 7. Distribution of time and spectral domain features of the set of
25 healthy children with centers of clusters standing for the right and left
legs and areas of c multiples of standard deviations for c = {0.5, 1.0, 1.5}.

Table 2 provides a comparison of the classification of
selected motion features using a support vector machine
(SVM), Bayesian method [47], and a two-layer neural
network with sigmoidal and softmax transfer functions, with
10 neurons in the first layer. All associated algorithms
were developed in the computational and visualization
environment of Matlab 2024a, utilizing its toolboxes. Cross-
validation errors were calculated using the 10-fold cross-
validation method.
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The arrangement of time and spectral domain features for
the set of 25 healthy children is depicted in Fig. 7. In this
case, frequency domain features represent the relative power
in the ⟨0, 3⟩ Hz range. The results indicate a similarity in the
features of the left and right legs in cases of predominantly
symmetric walking, with a global coefficient of symmetry
equal to 0.71.

Figure 8 illustrates the distribution of cluster center means
for the left and right legs, comparing 25 healthy children
(primarily exhibiting symmetric walking) and 10 unhealthy
children (primarily exhibiting asymmetric walking). This
analysis employs both time-domain and spectral-domain
features, which represent the standard deviation of accelero-
metric data and the relative power in the ⟨0, 3⟩Hz range,
respectively. The notations of lines correspond to the
individuals specified in Table 1. The mean distances for
the first group of 25 children are 3.7 ± 3.9, whereas for
the second group of 10 children, they are 7.4 ± 3.3. These
results suggest a better separation of asymmetric walking,
as evidenced by the higher distances between their cluster
centers.

FIGURE 8. Distances of feature cluster means for (a) the prevailing
symmetric and (b) prevailing asymmetric walking for the set of 25 healthy
and 10 unhealthy individuals, respectively.

The results indicate the potential for mathematical analysis
of accelerometric data to detect walking disorders and assist
in identifying motion asymmetry.

IV. DISCUSSION
The widespread availability of wearable sensors and smart-
phone technology is driving a rapid accumulation of human
data, prompting the application of innovative computational
and machine learning methods in clinical predictions.

This paper focuses on studying pediatric gait characteris-
tics and asymmetrical walking patterns associated with gait
disorders using smartphone sensors. The research utilizes
the global navigation satellite system and selected wearable
sensors for motion analysis. A diverse group of 35 children,
varying in age, gender, and BMI, was analyzed, examining

gait features in both the time and frequency domains. Various
mathematical methods were employed to classify different
walking patterns.

The classification of pediatric walking was based on
signals recorded by the accelerometer within a smartphone
placed at specific body positions. The average gait symmetry
coefficient was found to be 37% better in healthy normos-
thenic children compared to healthy obese children.

Numerical analysis of accelerometric signals indicates a
classification accuracy of 92% for distinguishing features of
the left and right legs using a two-layer neural network for
asymmetrical walking. The best classification accuracy for
symmetrical walking was 79%, suggesting overlapping fea-
ture clusters and similar gait features in healthy individuals.

The relationship between the symmetry coefficient and
body mass index shows that asymmetric walking tends to
increase with higher BMI values in healthy children. This
trend is consistent for both boys and girls, with positive
line slopes indicating an association between BMI and
asymmetric walking. Additionally, asymmetrical walking is
more prevalent among boys than girls.

The potential applications of gait symmetry assessment
methods in clinical practice include their impact on the
diagnosis and rehabilitation of children with gait disorders.
Gait asymmetry can reveal underlying functional deficits,
such as muscle weakness, joint stiffness, or neurological
impairments. By identifying these issues, rehabilitation can
be tailored to address specific concerns. Asymmetrical gait
can lead to poor balance and an increased risk of falls,
so rehabilitation focused on correcting asymmetries can
enhance overall stability and reduce the risk of injuries.
Correcting gait asymmetry can also lead to smoother, more
efficient walking patterns, improving mobility, especially for
individuals recovering from injuries or dealing with chronic
conditions like stroke or arthritis. Asymmetrical gait often
results in the uneven distribution of forces across the body,
contributing to pain in the hips, knees, or back. Rehabilitation
aimed at promoting symmetry can help alleviate this pain by
encouraging more balanced movement.

V. CONCLUSION
The paper addresses issues related to gait symmetry and the
analysis of motion monitoring during walking experiments
involving a group of 35 children. A specialized algorithm
for smartphones was developed and utilized for acquiring
accelerometric and GNSS data. This algorithm evaluates
the coefficient of walking symmetry and visualizes the
distribution of walking characteristics.

The results suggest that this method could be effective
in distinguishing between the motion symmetry of normal
walking and the movements of children with various walking
disorders. Mathematical analysis of these motion patterns
can inform the development of rehabilitation exercises and
assist in monitoring the outcomes of their implementation.
For more general studies and the evaluation of features in
both healthy and unhealthy individuals, it may be necessary
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to balance individual groups using techniques like Synthetic
Minority Over-sampling Technique (SMOTE) to create
datasets of similar sizes.

Possible issues of overfitting that could affect the model’s
performance on new data should be addressed in future
research. This can be achieved by increasing the training
dataset to help the model generalize better, reducing the
model’s complexity, and closely monitoring the model’s
performance throughout the training process.

Applications of gait symmetry analysis extend to various
fields, including motion monitoring in sports medicine,
orthopedic care, and aiding individuals with neurological
disorders in adjusting medications or therapies to better
control symptoms and improve quality of life. Asymmetries
in gait can also indicate balance problems or muscle
weakness, leading to targeted interventions to prevent falls
and enhance safety in daily activities. In academic and
industrial research, gait symmetry analysis is utilized in
the development of new medical devices and rehabilitation
technologies.

A specific application includes the examination of rehabil-
itation exercises related to pre- and post-operative treatment
during surgeries. Modifications of the proposed method can
provide insights into the quality of exercises prescribed by
rehabilitation specialists or medical doctors, thereby reducing
the probability of complications after complex surgeries.

Future research should focus on the integration of more
complex sensors, time-synchronized data acquisition, and
advanced computational techniques. It is anticipated that
sophisticated mathematical tools based on machine learning
and computational intelligence will analyze complex patterns
in the data, leading to improved diagnostics, motion monitor-
ing, and personalized treatment plans. These advancements
are closely linkedwith the progress of mathematical methods,
deep learning strategies, and the application of augmented
reality.
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