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Robotics plays a key role in industry, and its use continues to grow. Robots are used in many sectors to 
increase the efficiency, productivity, and safety of work processes. This manuscript focuses on the spatial 
calibration of collaborative robot arms using appropriate statistical tools. Nowadays, there are many ded-
icated programming languages, simulations or virtual reality (VR), which in most cases perform calibra-
tion using matrix relations. The mathematical-statistical solution is not often addressed, and the use of 
linear relationships is valid only in certain parts of the workspace of the collaborative robot. The purpose 
of this article is to demonstrate how to find a suitable statistical method that would respect the wear of 
the arm mechanism in predefined positions based on the requirements of ISO 230-2:2015. Based on these 
measurements, it is possible to assume that optimal solutions can be obtained using a polynomial re-
gression function. This optimization method will be explored using the Newton and Markwartel meth-
ods. 

Keywords: Industrial Robots, Kinematic Models, Polynomial Regression, Error Measurement, Collaborative Ro-
bot 

 Introduction 

Since the beginning, humankind has been dealing 
with the question "How to simplify and facilitate 
work". The first mention of the robot's theme can be 
found in Greek mythology. However, the term robot 
was first coined by Karel Čapek thanks to his brother 
Josef in 1920 in the R.U.R. (Rossum's Universal Ro-
bots) [1]. It was not until the second half of the 20th 
century that robotics took off. The father of robotics 
is often called J. Engelberger. The first robots were 
basically only able to move an object from point A to 
point B. Today, this movement would be insufficient 
and robotics had to adapt to new requirements such 
as assembly, welding, and spraying paint. Robots have 
become a multidisciplinary engineering devices. Me-
chanical engineering is a branch of engineering that 
deals with the design of individual mechanical compo-
nents, arms, end effectors, kinematics, dynamics, and 
control analyses of robots. Robotics plays a key role in 
industry, and its use is increasing. Robots are used in 
many industries to improve efficiency, productivity, 
and safety of work processes. In industry, robotics has 
the potential to fundamentally change the way we 
work and how products are manufactured and deliv-
ered. With the development of technologies such as 
artificial intelligence, machine learning and advances 
in sensors, robotics is expected to play an even more 
important role in industry in the future. 

Industrial robots are specialized robotic systems 
designed for use in industrial environments. They are 
developed to perform specific tasks to improve the ef-
ficiency, productivity, and safety of industrial opera-
tions. The status of robotic arm calibration solutions 
can vary depending on specific technologies and sys-
tems. In general, calibration of robotic arms is an im-
portant process to ensure correct and accurate move-
ments of robots and their end effectors. 

Publications [2 - 6] deal with the improvement of 
robotic arm calibration using corrections based on lo-
cal linear neurofuzzy models. After standard calibra-
tion of geometric parameters in the robot kinematic 
model, residual errors persist between the measured 
positions and the positions predicted by the model. 

Studies [7 - 10] focus on the inertial measurement 
unit (IMU), which is the core of inertial positioning 
and navigation systems. Each IMU consists of at least 
three accelerometers and three gyroscopes (angular 
velocity sensors). 

Another possible solution for the robot kinematic 
parameters is addressed in studies [11 - 13] using non-
linear least squares optimization. Nonlinear Least 
Squares (NLS) optimization is a mathematical method 
for solving problems where we seek values of the 
model parameters that minimize the squared error be-
tween the observed data and the values predicted by 
the model.  
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The principle of nonlinear least squares optimiza-
tion is to find the values of the model parameters that 
minimize the sum of the squares of the residuals (the 
differences between the observed data and the model 
values). The basic goal is to find a set of parameters 
that achieves the best fit between the model and the 
real data. There are several algorithms for solving non-
linear least squares optimization, including the Gauss-
Newton method, Levenberg-Marquardt method, and 
the conjugate gradient method. These algorithms iter-
atively update the parameter values to minimize the 
error function. Nonlinear least squares optimization is 
useful in situations where the data cannot be modeled 
with a linear model and allows efficient parameter es-
timation for more complex nonlinear models. 

Other publications [14 - 17] describe LIDAR 
(Light Detection and Ranging), which is a ranging 
technology that uses laser beams to map and sense the 
surrounding environment. The working principle of 
LIDAR is based on sending a laser beam into the en-
vironment and then detecting the reflected light from 
the surfaces of objects. In this way, distances from the 
device to surrounding objects can be measured, creat-
ing a detailed three-dimensional map of the environ-
ment. The resulting map is called a LIDAR image or 
point cloud, which is a collection of three-dimensional 
points that represent individual objects in the scene. 

This paper proposes statistical methods for calibra-
tion. This provides a way to substantially improve the 
positioning of robotic arms and refine the calibration 
model. At the same time, it was found that the wear 
of the arms is different, which has to be taken into 
account in practice. It will have to be found separately 
for each arm using the regression function, which will 
be eventually implemented at defined points in the ro-
bot. 

 Materials and Methods 

Robot calibration is performed to improve the po-
sitioning accuracy of robots by making changes to the 
robot software instead of changes to the kinematic 
structure. The factors that affect robot accuracy are 
similar to those affecting the precision of other me-
chanical devices, such as manufacturing tolerances of 
the components used, component wear, and assembly 
accuracy. Some of these influences can be eliminated 
to varying degrees by calibration. Calibration does not 
affect repeatability. Accuracy is defined as the degree 
of agreement between the desired position and the 
achieved position. Factors influencing robot accuracy 
include, in particular, component accuracy, assembly 
accuracy and gravitational deformation. [18] Repeata-
bility is defined as a measure of the system's ability to 
return to the same position. It does not depend on the 
accuracy of the desired position. Highly repeatable 
systems exhibit low variance in repeated movements 
to a given position, regardless of the direction from 

which the position was reached. We can further define 
unidirectional repeatability as the ability of a system to 
return to the same position from a given direction. 

The factors affecting repeatability are mainly clear-
ances in the positioning system, thermal deformations 
and other random errors. The relationship between 
accuracy and repeatability significantly affects the ap-
plication and programming capabilities of robots. If 
the robot is programmed by guiding it to individual 
working positions, the problem of absolute accuracy 
is eliminated. In fact, the operator essentially calibrates 
the robot in each working position during program-
ming. Conversely, if the robot is programmed in ad-
vance of being placed on the workstation (so-called 
offline), absolute positioning accuracy is essential. Ab-
solute positioning accuracy is therefore essential for 
virtual actuation options or for the implementation of 
production technology directly by the robot (applica-
tions where the robot carries the spindle). 

2.1 Standart ISO 230-2:2015   

The ISO 230-2:2015 Test code for machine tools 
Part 1: Geometric accuracy of machines operating un-
der no-load or quasi-static conditions provides a com-
prehensive framework for testing the geometric accu-
racy and performance of machine tools [19]. Further-
more, it can also be used to refine the positioning of a 
robotic arm. The following steps could have been 
taken with respect to this standard: 

• Analysis of positioning requirements, 

• Identification of geometric parameters, 

• Measurement planning, 

• Analysis of results,  

• Refinement of positioning, 

• Documentation and maintenance. 

2.2 Reflectors 

In this way, ISO 230-2:2015 was used to refine the 
positioning of the robotic arm and ensure optimal per-
formance. When evaluating the repeatability and re-
producibility of robotic arm positioning using the laser 
interferometric method, a fundamental problem arises 
in the fitting, the appropriate mounting of the inter-
ferometric reflectors and laser beam splitters. For this 
reason, it was necessary to design and subsequently 
manufacture single-purpose mounts. The basic task of 
the designed clamps is to ensure correct guidance of 
the reflectors in two planes, namely the horizontal and 
vertical planes and their positioning in the Cartesian 
system [20]. The practical realization of the individual 
clamps was realized in the form of 3D printing of 
CF15/ASA material, which provides sufficient shield-
ing of the reflectors against vibrations that arise during 
the operation of the motors that ensure the movement 
of the arms (figure 1). 
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Fig. 1 Grip prototype attachment 
 
The functional component of the clamps was im-

plemented by designing bolted connections, attached 
to the individual arms, through damping washers. The 
design of the clamp is adapted to ensure the possibility 
of quick exchange of the reflectors and dividers. 

2.3 Linear cycle 

The linear approach is a classical solution using the 
ISO 230-2:2015 standard. The linear cycle of the ro-
botic arm interacting with the reflector can be de-
scribed as a carefully coordinated sequence of move-
ments, designed to optimise the interaction between 
the two components. At the beginning of the cycle, 
the robotic arm initiates the cycle by moving towards 
the reflector, moving in a straight and stable trajectory 
that minimizes unnecessary vibrations and increases 
the accuracy of the trajectory. [20] The movement 
from the starting position to the ending position is 
designated by +, and movement back or from the end-
ing position to the starting position is designated by -. 
Figure 2 shows the variance of position errors in mi-
crometers (µm) versus position in millimeters (mm) 
for two variables: X+ and X-. This data can be inter-
preted as a measurement of the positional accuracy of 
a device that moves along an axis, looking at how ac-
curately it can hold a specified position in both direc-
tions (to plus and minus values).

 

Fig. 2 Variance of positional errors 
 
The 95% Bonferroni confidence intervals for the 

standard deviations in the different groups are pre-
sented below. The horizontal axis represents the 
standard deviations, and the vertical axis indicates the 
different groups, which are indicated by a number, 
such as 0+, 60+, 120+. The confidence intervals  

provides a range within which we can assume with 
95% confidence that the true standard deviation is lo-
cated. The Bonferroni correction is used to account 
for multiple comparisons, which makes the intervals 
wider than they would be without this correction, thus 
controlling the number of Type I errors.

 

Fig. 3 Bonferroni variance test a) direction +; b) direction - 
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The results of Bartlett's test (figure 3) show that the 
test statistic is 957.86 and the p-value is 0.000. Bart-
lett's test is used to test the hypothesis that multiple 
samples have equal variances. In this graph, a p-value 
of 0.000 (meaning p < 0.001) strongly rejects the null 
hypothesis that the variances between groups are 
equal. This suggests significant heterogeneity in vari-
ances between groups. Thus, the graph shows that 
there is significant variability in the standard devia-
tions between the groups, as indicated by Bartlett's test 
(p < 0.001). Bonferroni confidence intervals indicate 
the range within which the true standard deviations of 
the groups are likely to lie with 95% confidence. 

 

Fig. 4 Confidence intervals for the mean error values in the + 
position 

 
Figure 4 shows the 95% confidence intervals for 

the mean values of position + errors (in micrometers) 
for the different factor levels. On the horizontal axis 
are displayed the factor levels (0+, 60+, 120+) and on 
the vertical axis represent the position error. The hy-
pothesis of the test is as follows: The null hypothesis 
assumes that all means are the same, while the alterna-
tive hypothesis asserts that at least one mean is differ-
ent. The significance level is set at α = 0.05. 

The Welch test was used to test for differences be-
tween means, which does not require the assumption 
of identical variances. The results of this test show an 
F-value of 2598.16 and a p-value of 0.000. A p-value 
of 0.000 (p < 0.001) strongly rejects the null hypothe-
sis that the means are equal, indicating there is a sig-
nificant difference between the means for different 
levels of the factor. The R-squared (R-sq), which 
shows how well the model explains the variability in 
the data, is 71.45%. The adjusted R-squared (R-
sq(adj)) is 71.40% and the predicted R-squared (R-sq 
(pred)) is 71.34%. Thus, the graph and Welch's test 
show that there is a significant difference between the 
means of the position errors for the different factor 
levels (p < 0.001). The model explains approximately 
71.45% of the variability in the data.  

The graph (figure 5) shows the confidence inter-
vals (95% CI) for the mean position error values (in 
micrometers) for various factors from 0 to 600 in 

steps of 60. The results show that the lowest position 
error is at factor 0 (approximately 26 µm) and highest 
at factor 600 (approximately 143 µm). The cutoffs 
vary, with a significant increase in error at factors 60 
and 120 and a subsequent decrease that increases again 
after factor 360. The Welch test, which does not re-
quire equal variances, showed that there is a statisti-
cally significant difference between the means of each 
factor (p-value is less than 0.05). The model explains 
about 78.88% of the variability in the position errors, 
which means that it is quite accurate. 

 

Fig. 5 Confidence intervals for the mean error values in the – 
position 

2.4 Polynomial regression 

Polynomial regression, as a statistical method, pro-
vides an effective means to model complex relation-
ships between independent and dependent variables. 
In the context of refining robotic arm positioning, this 
method becomes a valuable tool for identifying and 
quantifying the factors influencing arm positioning 
and then constructing a mathematical model that de-
scribes this relationship. The use of polynomial regres-
sion allows for more complex modelling than simple 
linear methods and allows for the capture of indirect, 
non-linear and interaction effects between different 
variables. This produces a more robust and accurate 
mathematical description of the robotic arm position-
ing, which is key to achieving the desired level of ac-
curacy and reliability in robotic system control. The 
integration of polynomial regression into the robotic 
arm positioning refinement process provides a sys-
tematic and statistically based approach to identify and 
quantify the factors that influence arm positioning and 
optimize the control of the robotic system to achieve 
the desired results. 

Once the variables were identified, polynomial re-
gression was performed to model the complex rela-
tionships between the independent and dependent 
variables. The polynomial model that best fitted the 
relationship between these variables was selected and 
evaluated. Statistical tests such as coefficients of deter-
mination, F-tests and t-tests of coefficients were used 
to assess the accuracy and relevance of the model. 
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For the methodology of using polynomial regres-
sion to refine the positioning of the robotic arm, sev-
eral steps were included to systematically identify the 
relationships between the different variables affecting 
the arm position and the position itself. The following 
procedures describe this process in detail: 

• Data collection: the first step was to collect 
data describing the position of the robotic 
arm and the variables that affect it. These var-
iables included joint angles, movement 
speeds, force or moments at the end of the 
arm, the surrounding environment, and other 
relevant factors. 

• Variable identification: identification of varia-
bles that have the potential to affect the posi-
tion of the robotic arm.  

• Model selection: Based on the identified vari-
ables, decide on the appropriate type of poly-
nomial model. This may include a decision on 
the degree of polynomial, which determines 
how complex the formulas will be used to ap-
proximate the relationship between the varia-
bles. 

• Data preparation: the data are prepared for 
analysis, which involves cleaning and possibly 
normalising the data. This step is important to 
ensure that the data are appropriately pro-
cessed for polynomial regression. 

• Application of polynomial regression: We 
perform the analysis using polynomial regres-
sion, using the identified variables as input 
variables and the position of the robotic arm 
as the output variable. The objective is to find 
a polynomial function that most accurately 
represents the relationship between these var-
iables. 

• Evaluation of the model: We examine the ac-
curacy and precision of the model using sta-
tistical methods such as coefficient of deter-
mination R2, residual analysis and others. 
This provides us with information on how 
well the model fits the actual data. 

• Optimisation and validation: if necessary, we 
can optimise the model and vali-date it on in-
dependent data. This ensures that the model 
is able to generalize well to new data and pro-
vide reliable predictions of the position of the 
robotic arm. 

• Implementation: finally, if the model is suc-
cessfully verified, it can be implemented in the 
control software of the robotic system. This 
allows the model to be used for real-time con-
trol of arm positioning to achieve desired ac-
curacy and stability goals. 

 

Fig.  6 Polynomial regression 
 
This graph (figure 6) presents the results of a third-

degree polynomial regression analysis for position er-
rors in the + and - directions. 

For the + direction, the model equation was as fol-
lows: 

Position error = 56.66 + 1.04 ⋅ Position - 
0.0046 ⋅ Position2 +5.18 × 10-6 ⋅ Position3 

(1) 

Key statistical indicators for this model include the 
multiple correlation coefficient RveR2 was 0.90, indi-
cating that 90% of the variability in position error is 
ex-plained by the model. The predicted correlation co-
efficient Rp was 310.89. Akaike's in-formation crite-
rion was 56.84. 

For the - direction, the model equation was as fol-
lows: 

Position error = 35.32 + 1.08 ⋅ Position - 
0.0047 ⋅ Position2 + 5.34 × 10-6 ⋅ Position3 

(2) 

Both models were subjected to several statistical 
tests to verify their accuracy and significance. The 
Fisher-Snedecor test confirmed the significance of 
both models with high probability (p-value < 0.001). 
The Scott's multicollinearity criterion showed that the 
models were accurate and did not show multicolline-
arity. The Cook-Weisberg test for heteroskedasticity 
confirmed that the residuals exhibited homoskedastic-
ity, indicating constant error variance. The Jarque-Berr 
normality test showed that the residuals have a normal  
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distribution. Furthermore, the Wald autocorrelation 
test confirmed non-significant autocorrelation of the 
residuals, and the Durbin-Watson test showed neither 
positive nor negative autocorrelation of the residuals. 
The sign test of the residuals showed that there was 
no trend in the residuals. 

Thus, it can be concluded that the third-order pol-
ynomial models provide significant and accurate de-
scriptions of position errors as a function of position 
in both the + and - directions. All tests confirm that 
the models are statistically significant and correctly 
specified. 

 Results and Discussion 

Polynomial regression is a powerful tool for mod-
elling complex relationships be-tween independent 
and dependent variables when linear models are not 
sufficient. In our case, polynomial regression was per-
formed on the variable "Position" and its parameter 
estimates were statistically tested. The results show 
that all included parameters are significant: 

The constant (Abs) was estimated to be 45.993 
with a relatively low standard deviation of 10.452. The 
linear coefficient for "Position" was 1.061 with a 
standard deviation of 0.159. The quadratic coefficient 
was negative, at -0.0046, with a very small standard de-
viation of 0.000634. Finally, the cubic term had a co-
efficient of 5.262⋅10-6 and a standard deviation of 
6.926⋅10-7. 

 

Fig.  7 Graphical result of polynomial regression in the +/- 
position 

 
Various statistical characteristics were used in the 

model evaluation. The multiple correlation coefficient 
R was 0. 94806, indicating a strong linear relationship 
between predicted and actual values. The coefficient 
of determination |2 was 0. 8988, indicating that the 

model explained approximately 89.88% of the varia-
bility in the data. The predicted correlation coefficient 
R was lower, 0.3876, indicating some margin in the 
predictive ability of the model (figure 7). 

The mean square error of prediction (MEP) was 
328.158 and the Akaike information criterion (AIC) 
was 57.247, which are important indicators of the 
quality and accuracy of the model. 

To test the significance of the model, the Fisher-
Snedecor test was used, where the F value was 20.727, 
which clearly confirms the significance of the model 
with an F quantile of 4.347 and a probability of 
0.000736. Furthermore, it was tested for multi-collin-
earity using Scott's criterion, where the value -0.358 
shows that the model is correct without the presence 
of multicollinearity. The Cook-Weisberg heteroske-
dasticity test showed a value of 0.437 at a critical quan-
tile of 3.842, with a probability of 0.509, which means 
that the residuals are homoscedastic. The Jarque-Berr 
normality test showed a value of 1.0537 with a critical 
quantile of 5.992 and a probability of 0.591, thereby 
confirming a normal distribution of residuals. 

Furthermore, the Wald test for autocorrelation was 
performed, which with a value of 0.032 and a proba-
bility of 0.858 showed that the autocorrelation is insig-
nificant. Similarly, the Durbin-Watson test with a 
value of -1 and critical values of 0 and 2 showed no 
negative autocorrelation of the residuals. A sign test of 
the residuals then showed that there is no trend in the 
residuals, with a value of 0.029 and a probability of 
0.977. 

In conclusion, the polynomial regression is statisti-
cally significant, does not show multicollinearity, the 
residuals are homoscedastic and have a normal distri-
bution, and there is no autocorrelation or trend in the 
residuals. These findings confirm the appropriateness 
of using polynomial regression for the given dataset 
and its ability to accurately model the relationship be-
tween the investigated variables. 

 Conclusions 

The research presented in this paper demonstrates 
the effectiveness of using statistical methods, particu-
larly polynomial regression, to refine the positioning 
of robotic arms. Using exponential-type nonlinear re-
gression functions, it was possible to minimize posi-
tioning errors. The Newton and Levenberg-Mar-
quardt methods played an important role in the search 
for optimal solutions. 

The implementation of statistical methods in ac-
cordance with the ISO 230-2:2015 standard led to a 
significant improvement in positioning accuracy. The 
use of polynomial regression enabled the modeling of 
complex relationships between different variables, re-
sulting in a robust and accurate mathematical model. 
The Newton and Levenberg-Marquardt methods have  
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proven to be effective tools for optimizing regression 
models, thereby minimizing positioning errors. 

Since there was a certain degree of error in the po-
sitioning of the robotic arm in different positions, it 
was necessary to perform an optimization using the 
error square. The data collected on the positions of 
the robotic arm at different points showed that there 
is some inaccuracy or fluctuation in the positioning, 
which can be caused by various factors such as me-
chanical deviations, unevenness in the surface or the 
influence of external conditions. To increase position-
ing accuracy, the method of optimizing the square of 
errors was selected, which allows minimizing the sum 
of squares of deviations between the actual position of 
the arm and the predicted position based on the se-
lected model. Polynomial regression was used to cre-
ate a mathematical model that describes the relation-
ship between the various factors affecting arm posi-
tion and the arm position itself. This model was opti-
mized to align most closely with the real data and min-
imize the squared error. 

The error squared optimization provided a system-
atic and efficient way to improve the positioning accu-
racy of the robotic arm and achieve the desired level 
of accuracy in our application. This resulted in the im-
provement of the control of the robotic system and 
the optimization of its performance in a real operating 
environment. The implementation of these statistical 
methods in industrial practice can significantly im-
prove the positioning accuracy and efficiency of ro-
botic systems. Future research should focus on further 
improving the models and adapting them to different 
types of robotic mechanisms. Moreover, it is recom-
mended to carry out further tests in real operating 
conditions to verify the robustness and reliability of 
the proposed methods. 
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