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Abstract: Autotuners represent a combination of a relay feedback identification test and some control 

design method. In this contribution, models with up to three parameters are estimated by means of a single 

asymmetrical relay experiment. Then a stable low order transfer function with a time delay term is identified 

by a relay experiment. Autotuning principles then combine asymmetrical relay feedback tests with a control 

synthesis. Two algebraic control syntheses then are presented in this paper. The first one is based on the 

ring of proper and stable rational functions RPS. The second one utilizes a special ring RMS, a set of RQ-

meromorphic functions. In both cases, controller parameters are derived through a general solution of a 

linear Diophantine equation in the appropriate ring.  A final controller can be tuned by a scalar real 

parameter m>0. The presented philosophy covers a generalization of PID controllers and the Smith-like 

control structure. This contribution deals with the implementation of proposed autotuners and presents some 

illustrative examples.  
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1. INTRODUCTION 

The paper presents two possibilities how to design controllers 

for simple delayed systems. There surely exist several 

approaches of control design methods, nowadays, three main 

groups dominate. The first group contains approaches based 

on the Smith predictor structure, or more precisely its 

modifications, see e.g. Majhi and Atherton (1998), Majhi 

(2007). These methods assume model of the controlled system 

in feedback loops in the sense of IMC (Internal Model 

Controllers). The second group consists of predictive based 

approaches, mainly using state-space description. The third 

approach is based on algebraic tools and methods and its 

development can be traced in Vidyasagar (1985), Kučera 
(1993), Prokop and Corriou (1997), Zítek and Kučera (2003), 

etc. Methods from the third group are described in the paper. 

The first design in the paper utilizes a ring of stable and proper 

meromorphic functions RMS omitting any approximation 

which was developed especially for delay systems, Zítek and 
Kučera (2003).The second one is based on the ring of stable 

and proper rational function RPS, see Vidyasagar (1985),  

Kučera (1993), Prokop and Corriou (1997). Many industrial 

processes can be modeled with stable systems with a delay 

time term. The contribution brings controller design for first 

order (stable) delayed (FODS) and second order (SODS) 

models. For both systems, the control syntheses are performed 

that are applied in RMS and in RPS, as a special case with 

neglecting of the time delay term. Some of the developed 

controllers are no more in PI/PID structure. Subsequently, they 

are utilized in an autotuning scheme and then compared in 

control of a high order system with a time delay term. 

2. SYSTEM DESCRIPTION 

This contribution deals with two simplest SISO linear dynamic 

systems with a delay term. The first model of the first order 

(stable) plus dead time (FOPDT) is supposed in the form: 
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The second order model plus dead time (SOPDT) is assumed 

in the form: 
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2.2 Models in RPS 

The traditional engineering design approach of PID like 

controllers was performed either in the frequency domain or in 

polynomial representation, see e. g. Åström and Hägglund, 

(1995). Nevertheless, the fractional approach developed in 

(Vidyasagar, 1985; Kučera, 1993) and analyzed in (Prokop 
and Corriou, 1997; Prokop et al., 2005, 2010) enables a deeper 

insight into control tuning and a more elegant expression of all 

suitable controllers. 

It is well known that a set of polynomials is a ring. However, 

there are other rings which can be used for the system 

description. The fractional approach supposes that transfer 

functions of continuous-time linear causal systems in RPS can 

be expressed as a ratio of two elements: 
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2.3 Models in RMS 

An element of this ring RMS is a ratio of two retarded 

quasipolynomials y(s)/x(s). A retarded quasipolynomial x(s) of 

degree n means 

    
1

0 1

exp , 0
n h

n i

ij ij ij

i j

x s s x s s 


 

     

where retarded refers to the fact that the highest s-power is not 

affected by exponentials. A more general notion called neutral 

quasipolynomials also can be used in this sense, see Pekař et 

al. (2010). Quasipolynomial (4) is stable when it owns no finite 

zero s0 such that Re{s0}   0.  For stability tests, see e.g. in 

Vyhlídal and Zítek (2001), Zítek and Kučera (2003), Pekař 
(2012), Prokop et al. (2016).  

Transfer function with time delay is considered as a fraction of 

two quasipolynomials and the denominator m(s) is a stable 

quasipolynomial.  As an example, a FODS can be expressed 

by 
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It is naturally possible to use factorization (5) with Θ = 0 or Θ 

= τ. For stable processes the option Θ = 0 is satisfactory; 

however, for unstable processes should be taken Θ ≠ 0. The 

choice Θ = 0 gives a traditional FOPDT system, see Yu 

(1999). The ratio after the second equal sign in (5) represents 

a generalization in RMS description with a(s), b(s), m(s) 

quasipolynomials. 

3. CONTROL DESIGN 

The control loop is considered as a simple feedback system 

(1DOF) with a controller Q(s)/P(s) and a controlled plant  

B(s)/A(s), depicted in Fig.1. The second possibility is to 

assume control loop in the 2DOF structure depicted in Fig. 2. 

 

Figure 1. One degree of freedom (1DOF) control loop 

The aim of the control synthesis is to stabilize a feedback 

control system, obtain asymptotic tracking and attenuate load 

disturbance. 

All feedback stabilizing controllers for the feedback system 

are given by a general solution of the Diophantine equation (A, 

B coprime): 

 1AP BQ   
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In contrast to the polynomial design, all controllers are proper 

and can be utilized. 

The Diophantine equation for designing the feedforward part 

in the structure 2DOF controller is: 
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In the case of 1DOF structure, asymptotic tracking is ensured 

by the divisibility of the denominator P by the denominator of 

the reference w = Gw/Fw. Asymptotic tracking in the case of 

2DOF structure is achieved by the solution of the second 

Diophantine equation (8). The most frequent case for w is a 

stepwise reference signal with the denominator in the form 
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Figure 2. Two-degree of freedom (2DOF) control loop 

3.1 PI and PID controllers in RPS 

Simplest cases for SISO systems (1) is a first order controlled 

system (plus time delay FOPDT). Diophantine equation (6) for 

the first order systems (1) without a time delay term can be 
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by 
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It is naturally possible to use factorization (5) with Θ = 0 or Θ 

= τ. For stable processes the option Θ = 0 is satisfactory; 

however, for unstable processes should be taken Θ ≠ 0. The 

choice Θ = 0 gives a traditional FOPDT system, see Yu 

(1999). The ratio after the second equal sign in (5) represents 

a generalization in RMS description with a(s), b(s), m(s) 

quasipolynomials. 

3. CONTROL DESIGN 

The control loop is considered as a simple feedback system 

(1DOF) with a controller Q(s)/P(s) and a controlled plant  

B(s)/A(s), depicted in Fig.1. The second possibility is to 

assume control loop in the 2DOF structure depicted in Fig. 2. 

 

Figure 1. One degree of freedom (1DOF) control loop 

The aim of the control synthesis is to stabilize a feedback 

control system, obtain asymptotic tracking and attenuate load 

disturbance. 

All feedback stabilizing controllers for the feedback system 

are given by a general solution of the Diophantine equation (A, 

B coprime): 
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In contrast to the polynomial design, all controllers are proper 

and can be utilized. 

The Diophantine equation for designing the feedforward part 

in the structure 2DOF controller is: 
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In the case of 1DOF structure, asymptotic tracking is ensured 

by the divisibility of the denominator P by the denominator of 

the reference w = Gw/Fw. Asymptotic tracking in the case of 

2DOF structure is achieved by the solution of the second 

Diophantine equation (8). The most frequent case for w is a 

stepwise reference signal with the denominator in the form 

; 0w

s
F m
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
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Figure 2. Two-degree of freedom (2DOF) control loop 

3.1 PI and PID controllers in RPS 

Simplest cases for SISO systems (1) is a first order controlled 

system (plus time delay FOPDT). Diophantine equation (6) for 

the first order systems (1) without a time delay term can be 

easily transformed into polynomial equation: 
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where Z is free in the ring RPS. Asymptotic tracking is achieved 

by the choice 
TK

m
Z   and the resulting PI controller is in 

the form: 
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For the SOPDT the design equation takes the form: 
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and after similar manipulations the resulting PID controller 

gives the transfer function: 
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For both systems FOPDT and SOPDT the scalar parameter 

m>0 seems to be a suitable „tuning knob” influencing control 

behavior as well as robustness properties of the closed loop 

system. The derivation for SOPDT can be found in Prokop et 

al. (2015a, 2015b). 

3.2 Controllers in RMS 

The first step of the control design is to stabilize the system by 

a proper feedback loop. It can be formulated in an elegant way 

in RMS by the Diophantine equation 
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where Z(s) is an arbitrary element of RMS. The special choice 

of this element can ensure additional control conditions. 

Details and proofs can be found e.g. in Zítek and Kučera 

(2003). Let the reference and load disturbance be expressed by  
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It is required that E(s) must belong to RMS. In other words, it is 

demanded that both Fw(s) and FN(s) divides P(s). Details about 

divisibility in RMS and RPS can be found, e.g. in Zítek and 

Kučera (2003), Pekař and Prokop (2008). The most frequent 

case is that both signals w(t) and n(t) can be considered as step 

functions. Thus, for the case of RPS ring, it is equivalent to 

reach the absolute term of P(s) equal to zero. The last condition 

is not possible to reach in RMS, due to B(s) and/or P0(s) 

containing delay term e-τs. For this case, the following 

expression for the absolute term in P(s) is demanded  se  1

where λ is a selected real parameter, usually λ = 
0

rm , where r 

is the order of the controlled system. This condition says that 

the controller GR(s)=Q(s)/P(s) has integral behavior for s → 0. 
It can be assured by proper choice of Z(s) in (7). If w(t) or n(t) 

is another function, divisibility conditions can be more 

complex.  
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Now parameterize the solution according to (7) to obtain 

controllers asymptotically rejecting the disturbance 
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The numerator of P(s) has to have at least one zero root. 

Moreover, it is appropriate to have P(s) in a simple form, 

which is fulfilled e.g. when  
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Thus, final controller’s structure is the following 
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The control design for according to Fig.1 (SOPDT) consists in 

(16) which takes the form 
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By the choice Q0(s) = 1, the solution of (14) is obtained as 
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and the general solution of (4) is given by 
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gives P(s) in a very simple form and κ is a real free parameter. 

By the choice κ = ( 2

0m /K) – 1, expression (15) is satisfied, and 
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Thus, the final form of the controller GR(s) is then 
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where m0 > 0 is a real positive tuning parameter which can be 

tuned, one of them as an “equalization principle” (Prokop et 

al. 2010a, b).  Since that controller (19) is in the 

quasipolynomial form, denominator in (19) has infinite 

number of poles. The construction of this controller is more 

complex than usual PI or PID controllers. However, modern 

PLC systems facilitate using advanced functions of the so-

called anisochronic controller. A case when τ = 0 gives PI and 

PID controllers. 

4. RELAY IDENTIFICATION 

An auto-tuning procedure consists of a process identification 

experiment plus a controller design method. The traditional 

method was proposed by Åström and Hägglund (1984, 1995) 
based on a symmetrical relay feedback test when a relay of 

magnitude hr is inserted in the feedback loop. A wide class of 

autotuning principles can be found in Yu (1999). In this paper, 

an asymmetrical relay with hysteresis is used. This relay 

enables to estimate transfer function parameters as well as a 

time delay term.  The feedback relay experiment is familiar 

known (e.g. Åström and Hägglund 1984, Yu 1999). 
Asymmetrical relay oscillations can be seen in Fig. 3.  

The process gain for (1), (2), (5) can be computed by the 

relation (Prokop et al, 2010a, 2010b) 
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The time constant and time delay terms for FOPDT are given 

by: 
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Relations for the second order model are 
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where ay and Ty are depicted in Fig. 3 and ε is the hysteresis. 

 
Figure 3. Asymmetrical relay oscillations 
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and the general solution of (4) is given by 
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gives P(s) in a very simple form and κ is a real free parameter. 

By the choice κ = ( 2
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where m0 > 0 is a real positive tuning parameter which can be 

tuned, one of them as an “equalization principle” (Prokop et 

al. 2010a, b).  Since that controller (19) is in the 

quasipolynomial form, denominator in (19) has infinite 

number of poles. The construction of this controller is more 

complex than usual PI or PID controllers. However, modern 

PLC systems facilitate using advanced functions of the so-

called anisochronic controller. A case when τ = 0 gives PI and 

PID controllers. 

4. RELAY IDENTIFICATION 

An auto-tuning procedure consists of a process identification 

experiment plus a controller design method. The traditional 

method was proposed by Åström and Hägglund (1984, 1995) 
based on a symmetrical relay feedback test when a relay of 

magnitude hr is inserted in the feedback loop. A wide class of 

autotuning principles can be found in Yu (1999). In this paper, 

an asymmetrical relay with hysteresis is used. This relay 

enables to estimate transfer function parameters as well as a 

time delay term.  The feedback relay experiment is familiar 

known (e.g. Åström and Hägglund 1984, Yu 1999). 
Asymmetrical relay oscillations can be seen in Fig. 3.  

The process gain for (1), (2), (5) can be computed by the 

relation (Prokop et al, 2010a, 2010b) 
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The time constant and time delay terms for FOPDT are given 

by: 
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where ay and Ty are depicted in Fig. 3 and ε is the hysteresis. 

 
Figure 3. Asymmetrical relay oscillations 
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A simpler class of controllers was derived in RPS representation 

(13), (15) with neglecting of time delay and the first order 

controller takes the form (for an appropriate choice of the 

tuning parameter, see Prokop et al., 2011) 
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The second order RPS controller gives 
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A second class of anisochronic controllers was derived 

according to methodology (20) - (30). The first order RMS 

controller for the given m0 > 0 is then 
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and the second order RMS controller takes the form 
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First and second order time responses for the original plant 

(34) are shown in Fig. 4. Open loop (GR.G) Nyquist plots of 

original plant (34) and anisochronic controller for various 

values of the tuning parameter are shown in Fig. 5. The gain 

and phase stability margins can be concluded from the plots. 

 

Figure 4. RPS control responses of (34) and (37), (38) 

 

Figure 5. RPS Nyquist plots of (34) and (37), (38) 

Control responses for the RMS first order controller (39) is 

shown in Fig. 6. The response for the second order controller 

is similar. 

 

Figure 6. RMS first order control response of (34) and (39) 

Fig. 7 and Fig. 8 demonstrate open loop Nyquist plots and 

stability margins for various tuning parameters. Further robust 

aspects for delayed systems are studied e.g. in Pekař et al. 
(2010), Pekař (2012). 

 

Figure 7. RMS first order Nyquist plots of (34) and (39) 

 
Figure 8. RMS second order Nyquist plots of (34) and (40) 
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 6. CONCLUSIONS 

The contribution illustrates a utilization of algebraic tools in 

the field of autotuners. The control synthesis is performed 

through a solution of a Diophantine equation in two rings. The 

first one is the ring of proper and stable functions RPS, the 

second one is the ring of RQ-meromorphic functions RMS. This 

approach utilizes quasipolynomials and yields a class of Smith 

predictor like controllers. A special case, a rational RPS 

function approach generates a class of generalized PID 

controllers.  Both design methodologies bring a scalar tuning 

parameter m0 > 0 that can be adjusted by various strategies. All 

derived algorithms were utilized as autotuning schemes with 

combination of relay feedback estimation. Transfer function 

parameters are estimated from asymmetric limit cycle data by 

a relay with hysteresis. The estimated transfer function is 

stable and time delay terms are accepted. The methodology is 

illustrated by the example of higher order and time delay. 

Better control responses as well as stability margins were 

achieved by anisochronic controllers while the RPS function 

approach gives a simpler controller structure. 
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