
Pumping Lemmata for Fuzzy Languages Accepted
by Jumping and Right One-Way Jumping Fuzzy

Finite Automata
Pavel Martinek

Department of Mathematics
Tomas Bata University in Zlı́n

Nám. T. G. Masaryka 5555, 760 01 Zlı́n, Czech Republic
e-mail: pmartinek@utb.cz

Abstract—Jumping finite automata represent an interesting
kind of automata working discontinuously over their input. They
can read any input symbol and jump without restrictions on any
other (not yet processed) symbol. Right one-way jumping finite
automata start their reading from the first symbol of the input
word, their ‘jumps’ can be performed only in the left-to-right
direction and after reaching the end of the input word, they can
resume from its left hand side. This modified specification (in
deterministic and nondeterministic variants) leads to automata
with different computational power. The paper deals with fuzzy
versions of these automata and with pumping lemmata for fuzzy
languages accepted by them.

Index Terms—Fuzzy jumping finite automata, fuzzy right one-
way jumping finite automata, fuzzy nondeterministic right one-
way jumping finite automata, Pumping lemma.

I. INTRODUCTION

Jumping finite automata were introduced by Meduna and
Zemek in [1]. These automata can skip some symbols during
processing their input and return to their processing later. They
led to enlarged research of computational devices which work
over their input discontinuously (cf., e.g., [2], [3], [4] or [5]).

A fuzzification of jumping finite automata was described in
[6] where the structure of truth values over the unit interval
[0; 1] (with the operations of minimum and maximum) is used.
We proceed with fuzzification of further variants of jumping
finite automata, specifically deterministic and nondeterministic
right one-way jumping finite automata. Some properties of
languages accepted by crisp (i.e., non-fuzzy) finite automata
can be transformed into corresponding properties of fuzzy
languages straightforwardly, while others cannot. Pumping
lemmata represent the latter case. For instance, when consider-
ing Pumping lemmata formulated for fuzzy regular languages
(using various truth value structures), they generally replace
the condition of full membership of a word in a crisp language
with a positive membership condition for the word in a fuzzy
language (cf. [7]). Specifically, the condition uxy, ux2y ∈ L
is replaced by the conditions of positive membership values
of uxy and ux2y in L without further demands on mutual
relationship of the values. In the case of languages accepted
by deterministic finite automata, it is easy to prove that

the membership values are equal (cf. [8] or [7]). However,
if fuzzy languages are accepted by certain nondeterministic
fuzzy automata with greater computational power than deter-
ministic fuzzy automata of the same kind, the situation can
differ. This holds true for right one-way jumping fuzzy finite
automata. In the paper, we will explore Pumping lemmata for
the corresponding fuzzy languages.

The presented paper is organized as follows. Section II
presents the fundamental concepts of jumping finite automata,
deterministic and nondeterministic right one-way jumping fi-
nite automata. In Section III, fuzzy versions of these automata
are described. Finally, in Section IV, Pumping lemma is
adapted to three families of fuzzy languages accepted by the
aforementioned fuzzy automata.

II. PRELIMINARIES

Since we assume certain familiarity of the reader with the
basic notions from Formal languages theory (cf. [9], [10]), we
remind only few of them:

If Σ is a finite nonempty set of symbols we call it an al-
phabet. For any set Σ, we denote by Σ∗ the set of all finite
strings over Σ (including the empty string ε) provided with
the binary operation of concatenation. If ai = a ∈ Σ for
i ∈ {1, . . . ,m}, we write am instead of a1 · · · am. Further,
we use notation a0 = ε. For a string w over Σ, we denote
the number of occurrences of a symbol a in w by |w|a. The
number of occurrences of all symbols in w is called the length
of w and is denoted by |w|. If w = a1 · · · an is a string
over Σ (with |w| = n) and ϕ : {1, . . . , n} → {1, . . . , n}
is a bijection, then the string P (w) = aϕ(1) · · · aϕ(n) is said
to be a permutation of w.

The next definition is based on [1].

Definition 1: A jumping finite automaton (JFA) is an
ordered quintuple A = (Q,Σ, δ, q0, F) where Q is a
nonempty finite set of states, Σ is an input alphabet,
Σ ∩ Q = ∅, δ ⊆ Q × Σ × Q is a transition relation, q0 is
the initial state, and F ⊆ Q is a set of final states.

20
24

 Jo
in

t 1
3t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

t C
om

pu
tin

g
an

d
In

te
lli

ge
nt

 S
ys

te
m

s a
nd

 2
5t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Ad
va

nc
ed

 In
te

lli
ge

nt
 S

ys
te

m
s (

SC
IS

&
am

p;
IS

IS
) |

 9
79

-8
-3

50
3-

73
33

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SC

IS
IS

IS
61

01
4.

20
24

.1
07

60
16

7

Authorized licensed use limited to: Tomas Bata University in Zlin. Downloaded on January 28,2025 at 14:28:59 UTC from IEEE Xplore. Restrictions apply.

A configuration is a string uqv ∈ Σ∗QΣ∗. Here q ∈ Q
is the current state of the automaton A, uv is the not yet
processed content of the input string, and the starting symbol
of v is the symbol which should be processed in the next
computational step.

The binary jumping relation (representing a computational
step) is a relation y ⊆ Σ∗QΣ∗ × Σ∗QΣ∗ defined by
(uqav, u′rv′) ∈ y iff (q, a, r) ∈ δ and uv = u′v′. As is
usual, we denote the reflexive and transitive closure of y by
y∗.

The language L(A) accepted by the jumping finite automa-
ton A is defined by
L(A) = {uv |u, v ∈ Σ∗, (uq0v, qf) ∈y∗ for some qf ∈ F}.

Example 1 ([11]): Let A= (Q,Σ, δ, q0, F) be a JFA with
Q = {q0, q1, q2}, Σ = {a, b}, δ = {(q0, a, q1), (q1, b, q2),
(q2, a, q1)}, F = {q2}.

The automaton is represented graphically with help of the
state diagram in Fig. 1 (i.e. by a labelled directed graph whose
nodes represent states of the automaton, the initial state is
indicated by the arrow pointing at it from nowhere, each final
state is depicted by double circle, and each arc in the graph
coincides with a transition — if the arc goes from state q to
state r and (q, a, r) ∈ δ then the arc is labelled by a.)

���� ���� ����
��
��

q0 q1 q2- - �
-a

a

b

Fig. 1.

For an input string baab, we have for example:
(bq0aab, baq1b)∈y , (baq1b, bq2a)∈y , (bq2a, q1b)∈y , and
(q1b, q2) ∈y . Therefore, (bq0aab, q2) ∈y∗. It is easy to see
that L(A) = {w ∈ Σ∗ | |w|a = |w|b > 0} which represents
the well-known example of non-regular language. �

Jumping finite automaton is defined as a nondeterministic
device. Its nondeterministic behaviour follows both from its
transition relation and from ability to jump (nondeterministi-
cally) to any position in the processed input. The freedom
in ‘choosing’ next position is suppressed in right one-way
jumping finite automata which were defined with ‘determin-
istic and nondeterministic transition relations’ in [2] and [12],
successively.

Definition 2: A nondeterministic right one-way jumping
finite automaton (NROWJFA) is an ordered quintuple A =
(Q,Σ, δ, q0, F) where its components are defined as in a JFA.
A way of how an NROWJFA processes its input is described
below. An NROWJFA A = (Q,Σ, δ, q0, F) is said to be
a right one-way jumping finite automaton1 (ROWJFA) if
(q, a, r) ∈ δ and (q, a, s) ∈ δ imply r = s for all q, r, s ∈ Q
and a ∈ Σ.

1Despite the fact that a right one-way jumping finite automaton represents
a deterministic automaton, in agreement with [2] and [13], we will not use
adjective ‘deterministic’ in its name.

A configuration of A is a string qw ∈ QΣ∗. Here q ∈ Q is
the current state of the automaton, w is the not yet processed
content of the input string, and the starting symbol of w is the
symbol which should be either processed or skipped in the
next computational step.

The binary right one-way jumping relation (representing
a computational step) is a relation � ⊆ QΣ∗ × QΣ∗ defined
by (quav, rvu) ∈ � iff (q, a, r) ∈ δ and (q, b, r′) 6∈ δ for
any symbol b of the string u and any r′ ∈ Q. This means that
the automaton reads (and deletes) the first possible symbol of
the string uav according to its transition relation. The skipped
substring u is considered to be moved behind the substring v.
As is usual, we denote the reflexive and transitive closure of
� by �∗.

The language L(A) accepted by the (nondeterministic) right
one-way jumping finite automaton A is defined by
L(A) = {w |w ∈ Σ∗, (q0w, qf) ∈ �∗ for some qf ∈ F}.

Example 2 ([11]): Let A= (Q,Σ, δ, q0, F) be a ROWJFA
with state diagram from Fig. 1.

For an input string aabb, we have: (q0aabb, q1abb) ∈ � ,
(q1abb, q2ba) ∈ � , (q2ba, q1b) ∈ � , and (q1b, q2) ∈ � .
Hence, (q0aabb, q2) ∈ �∗. It is easy to see that L(A) =
{aw ∈ a{a, b}∗ | |aw|a = |w|b} . �

Theorem 1 ([12], [13]):
(i) The family of languages accepted by ROWJFA is the

proper subfamily of the family of languages accepted
by NROWJFA.

(ii) The family of languages accepted by JFA is the proper
subfamily of the family of languages accepted by
NROWJFA.

(iii) The families of languages accepted by ROWJFA and
JFA are incomparable.

III. JUMPING FUZZY FINITE AUTOMATA

Similarly to other papers (cf. [14], [6]), we consider fuzzy
sets with truth values in the unit interval [0, 1], i.e. a fuzzy
set in a universe set X is any mapping M : X → [0, 1],
M(x) being interpreted as the truth degree of the fact that “x
belongs to M” and being called the membership value. A fuzzy
relation R between sets X and Y is defined as a mapping
R : X × Y → [0, 1]. Analogously, a fuzzy ternary relation R′

is defined as a mapping R′ : X×Y ×Z → [0, 1]. For brevity, in
the paper we denote the minimum operation over real numbers
by the symbol ∧.

Definition 3 ([6]): A jumping fuzzy finite automaton (JFFA)
is an ordered quintuple A = (Q,Σ, δ, q0, F) where Q is a
nonempty finite set of states, Σ is an input alphabet, Σ∩Q = ∅,
δ : Q× Σ×Q→ [0, 1] is a fuzzy transition relation, q0 ∈ Q
is the initial state, and F : Q→ [0, 1] is a fuzzy set in Q.

The jumping fuzzy relation is a mapping y : Σ∗QΣ∗ ×
Σ∗QΣ∗ → [0, 1] which is for all u, v, u′, v′ ∈ Σ∗, a ∈ Σ, and
q, r ∈ Q, defined by

Authorized licensed use limited to: Tomas Bata University in Zlin. Downloaded on January 28,2025 at 14:28:59 UTC from IEEE Xplore. Restrictions apply.

y(uqav, u′rv′)
def
=

{
δ(q, a, r) if uv = u′v′,

0 otherwise.

We extend the fuzzy relation y to a fuzzy relation y∗:
Σ∗QΣ∗ × Σ∗QΣ∗ → [0, 1] in the following way. Let
u, v, u′, v′ ∈ Σ∗ and q, s ∈ Q. Then

y0 (uqv, u′sv′)
def
=

{
1 if uqv = u′sv′,

0 otherwise,

yn (uqv, u′sv′)
def
=

max
r ∈ Q

u′′, v′′ ∈ Σ∗

{
y(uqv, u′′rv′′)∧yn−1(u′′rv′′, u′sv′)

}
for all n≥1,

y∗ (uqv, u′sv′)
def
= max

i≥0

{
yi (uqv, u′sv′)

}
.

The fuzzy language L(A) accepted by the JFFA A is defined
by

L(A)(w) = max
q ∈ Q

u, v ∈ Σ∗

uv = w

{y∗(uq0v, q) ∧ F (q)} for all w ∈ Σ∗

and is called a JFFA-language.

Example 3: Consider JFFA A = (Q,Σ, δ, q0, F) which is
represented graphically with help of the state diagram in Fig. 2.

��
��
����

��
��
����

q0 q1- �
-

b/0.8

a/0.6
0.3 0.9

Fig. 2.

It means that
Q = {q0, q1},
Σ = {a, b},
δ(q0, a, q1) = 0.6,

δ(q1, b, q0) = 0.8,

δ(qi, x, qj) = 0 otherwise,
F (q0) = 0.3, F (q1) = 0.9.

Then, for example,
y∗ (bq0a, q0) = y2 (bq0a, q0) = max{y(bq0a, q1b) ∧

y(q1b, q0),y(bq0a, bq1) ∧y(bq1, q0)} =

max{0.6 ∧ 0.8, 0.6 ∧ 0} = 0.6,

y∗ (baq0a, q1) = y3 (baq0a, q1) =

max{y(baq0a, q1ba) ∧ y2 (q1ba, q1)} =

max{y(baq0a, q1ba) ∧ y(q1ba, q0a) ∧ y(q0a, q1)} =

max {0.6 ∧ 0.8 ∧ 0.6} = 0.6.

Obviously,
L(A)(ba) =

max {y∗ (bq0a, q0) ∧ F (q0),y∗ (bq0a, q1) ∧ F (q1)} =

max {0.6 ∧ 0.3, 0 ∧ 0.9} = 0.3

and
L(A)(baa) =

max{y∗ (baq0a, q1) ∧ F (q1)} = 0.6 ∧ 0.9 = 0.6.
It is easy to see that for all w ∈ {a, b}∗,

L(A)(w) =


0.6 if |w|a = |w|b + 1,

0.3 if |w|a = |w|b,
0 otherwise. �

The next definition represents a modification of the previous
definition.

Definition 4: A nondeterministic right one-way jumping
fuzzy finite automaton (NROWJFFA) is an ordered quintuple
A = (Q,Σ, δ, q0, F) where Q is a nonempty finite set of states,
Σ is an input alphabet, Σ ∩ Q = ∅, δ : Q × Σ × Q → [0, 1]
is a fuzzy transition relation, q0 ∈ Q is the initial state, and
F : Q→ [0, 1] is a fuzzy set in Q.

The right one-way jumping fuzzy relation is a mapping � :
QΣ∗ ×QΣ∗ → [0, 1] which is for all u, v ∈ Σ∗, a ∈ Σ, and
q, r ∈ Q, defined by

�(quav, rvu)
def
=


δ(q, a, r) if δ(q, a, r) > 0 and

δ(q, b, r′) = 0 for any
symbol b of the stringu
and any r′ ∈ Q,

0 otherwise.

We extend the fuzzy relation � to a fuzzy relation �∗: QΣ∗×
QΣ∗ → [0, 1] in the following way. Let u, v ∈ Σ∗ and q, s ∈
Q. Then

�0 (qu, sv)
def
=

{
1 if qu = sv,

0 otherwise,

�n (qu, sv)
def
= max

r ∈ Q
u′ ∈ Σ∗

{
�(qu, ru′)∧ �n−1(ru′, sv)

}
∀n≥1,

�∗ (qu, sv)
def
= max

i≥0

{
�i (qu, sv)

}
.

The fuzzy language L(A) accepted by the NROWJFFA A is
defined by
L(A)(w) = max

q∈Q
{�∗(q0w, q) ∧ F (q)} for all w ∈ Σ∗

and is called an NROWJFFA-language.
A ROWJFFA-language is defined as the fuzzy language

L(A) accepted by the ROWJFFA A = (Q,Σ, δ, q0, F) which
differs from NROWJFFA by fulfilling an additional condition:
δ(q, a, r) > 0 for some q, r ∈ Q, a ∈ Σ implies δ(q, a, s) = 0
for all s ∈ Q, s 6= r. The fuzzy language L(A) accepted by
a ROWJFFA A is called a ROWJFFA-language.

The following theorem represents a straightforward gener-
alization of Theorem 1.

Theorem 2:
(i) The family of ROWJFFA-languages is the proper sub-

family of the family of NROWJFFA-languages.
(ii) The family of JFFA-languages is the proper subfamily

of the family of NROWJFFA-languages.

Authorized licensed use limited to: Tomas Bata University in Zlin. Downloaded on January 28,2025 at 14:28:59 UTC from IEEE Xplore. Restrictions apply.

(iii) The families of ROWJFFA and JFFA-languages are
incomparable.

IV. PUMPING LEMMATA

Pumping lemma for regular languages expresses well-
known necessary condition for a language to be regular (cf.
[15], [16]):

Theorem 3: If L is a regular language, then there is a
number p (the pumping length) where, if w is any string in L
of length at least p, then w can be divided into three substrings,
w = xyz, satisfying the following conditions:

(i) |y| > 0,
(ii) |xy| ≤ p,

(iii) for each i ≥ 0, xyiz ∈ L.

There are many papers adapting pumping lemma to fuzzy
regular languages with various structures of truth values (see,
for example, [8], [17] or [7]). Following Corollary 11 from [2],
we adapt the lemma to JFFA, ROWJFFA and NROWJFFA-
languages. Since the family of ROWJFFA-languages is the
proper subfamily of the family of NROWJFFA-languages
by Theorem 2, we obtain two versions of pumping lemma
(differing in mutual relationship of membership values of
L(w) and L(xyiz)) in the following Theorems 4 and 5 (cf.
also Theorems 3 and 4 of [14]).

Theorem 4: Let Σ be an alphabet and L : Σ∗ → [0, 1].
If L is either a JFFA-language or an NROWJFFA-language,
then there is a number p (the pumping length) where, if w is
any string of length at least p such that L(w) > 0, then there
is a permutation P (w) of w which can be divided into three
substrings, P (w) = xyz, satisfying the following conditions:

(i) |y| > 0,
(ii) |xy| ≤ p,

(iii) for each i ≥ 0, L(w) ≤ L(xyiz).

Proof: Since L is a JFFA-language (NROWJFFA-
language), there is a JFFA (NROWJFFA) A = (Q,Σ, δ, q0, F)
which accepts L. Denote the number of states in Q by p. Let
w = a1 · · · an be a string with a1, . . . , an ∈ Σ, n ≥ p and
L(A)(w) > 0. Further, let 4 ∈ {y,�}. (Clearly, 4 = y
and 4 = � will cover the cases of JFFA and NROWJFFA,
respectively.)

By Definition 3 (or 4), there are b1, . . . , bn ∈ {a1, . . . , an},
b1 · · · bn = P (w), q1, . . . , qn ∈ Q such that L(A)(w) =
4n(q0, w, qn) ∧ F (qn) = δ(q0, b1, q1) ∧ δ(q1, b2, q2) ∧ . . . ∧
δ(qn−1, bn, qn) ∧ F (qn).

Since n ≥ p, by the Pigeonhole principle, a state q′ must
be repeated in the sequence q0, . . . , qn, i.e. q′ = qj = qk for
some 0 ≤ j < k ≤ n. Suppose that j and k are the first such
indexes, i.e. q′ 6= qm for all m ∈ {0, . . . , j−1, j+1, . . . , k−1}.
We put

x = b1 · · · bj ,
y = bj+1 · · · bk,
z = bk+1 · · · bn.

Obviously, |y| > 0 and |xy| ≤ p. So, conditions (i) and (ii)
are satisfied.
(A) Consider i ≥ 1. With regard to the inequality
4∗(q0, xy

iz, qn) ≥ 4∗(qk, yi−1, qk) ∧ 4∗(q0, xyz, qn),
which follows directly from Definition 3 (or 4), we have:
L(A)(xyiz) = max

q∈Q

{
4∗(q0, xy

iz, q) ∧ F (q)
}
≥

4∗(q0, xy
iz, qn) ∧ F (qn) ≥

4∗(qk, yi−1, qk) ∧4∗(q0, xyz, qn) ∧ F (qn) =

4∗(q0, xyz, qn) ∧ F (qn) =

L(A)(w).

(B) L(A)(w) = δ(q0, b1, q1) ∧ δ(qn−1, bn, qn) ∧ F (qn) ≤
δ(q0, b1, q1) ∧ . . . ∧ δ(qj−1, bj , qj) ∧
δ(qk, bk+1, qk+1) ∧ . . . ∧ δ(qn−1, bn, qn) ∧
F (qn) ≤ 4∗(q0, xz, qn) ∧ F (qn) ≤
max
q∈Q
{4∗(q0, xz, q) ∧ F (q)} =

L(A)(xz).

(A) and (B) imply that condition (iii) of the theorem holds
true.

Remark 1: There is a natural question whether the inequal-
ities in Theorem 4(iii) can be replaced by equalities. The
answer is negative both for JFFA and NROWJFFA-languages
as follows from the next example.

Example 4: Let A = (Q,Σ, δ, q0, F) be a JFFA (or
NROWJFFA) with graphical representation from Fig. 3.

���� ���� ����
��
��

q0 q1 q2- - �
-a/1

b/0.5

b/0.5
0.5

6

a/1

���� ����
��
������

q3 q4

q5

-

�
��	 @

@
@I

b/0.3

b/0.3 b/0.3

0.3

Fig. 3.

Obviously, for any w ∈ {a, b}∗, we have

L(A)(w) =


0.5 if w = ab2n where n ≥ 0,

0.3 if w = ab3(2n−1) where n ≥ 1,

0 otherwise.

If we follow proof of Theorem 4 then we have p = 6.
Consider w = ab9 (whose length is greater than p). Then,

Authorized licensed use limited to: Tomas Bata University in Zlin. Downloaded on January 28,2025 at 14:28:59 UTC from IEEE Xplore. Restrictions apply.

L(A)(w) = 0.3. To obtain another string w′ by ‘pumping’
a substring y of a permutation P (w), clearly the substring y
must be of the form bm with m ∈ {1, . . . , 5} to fulfil the
condition |xy| = |abk| ≤ p = 6. Hence, P (w) = xyz =
abmb9−m and xyiz = abmib9−m = ab9+m(i−1). There are
the following cases:
• m is odd. Then, xyiz = ab2n for some n > 0 and
L(A)(xyiz) = 0.5.

• m ∈ {2, 4}. Then, xyiz = ab9+2(i−1) or xyiz =
ab9+4(i−1) for some i ≥ 1. However, for example,
i = 2 implies L(A)(xyiz) = L(A)(ab11) = 0 or
L(A)(xyiz) = L(A)(ab13) = 0.

We can conclude that, w′ containing y2 implies L(A)(w′) ∈
{0, 0.5} and L(A)(w) = 0.3 6= L(A)(w′). (Similar reasoning
can be described for greater numbers p or i, as well.) There-
fore, the inequalities in Theorem 4(iii) cannot be replaced
by equalities in the case of JFFA-languages or NROWJFFA-
languages. �

Replacement of the inequalities in Theorem 4(iii) by equal-
ities is possible only for some narrower family of fuzzy
languages. By Theorem 2, the family of ROWJFFA-languages
is a proper subfamily of the family of NROWJFFA-languages.
This fact leads to the next theorem describing another pumping
lemma. For a better understanding of its proof, we present the
following example.

Example 5: Let A= (Q,Σ, δ, q0, F) be a ROWJFFA with
graphical representation from Fig. 4.

���� ���� ����
��
��

q0 q1 q2- - -
a/0.7 a/0.7

��
U

b/0.5

0.7

Fig. 4.

Obviously, for any w ∈ {a, b}∗, we have

L(A)(w) =


0.7 if w = aa,

0.5 if w = abna where n ≥ 1,

0 otherwise.

If we follow proof of Theorem 4 then we have p = 3.
Consider w = aba (whose length is equal to p). Then,
L(A)(w) = 0.5. To obtain another string w′ by ‘pumping’
a substring y of a permutation P (w), clearly there must be
y = b. However,

L(A)(xyiz) = L(A)(abia) =

{
0.7 if i = 0,

0.5 if i ≥ 1.

Thus, for all i ≥ 1, L(A)(xyiz) = L(A)(w) = 0.5 6=
L(A)(xz) = 0.7. This example demonstrates that choice of
the value p in proof of Theorem 4(iii) is not great enough
to prove the equality L(A)(xyiz) = L(A)(xyz) for i = 0 at

ROWJFFA-languages. However, reasonable increasing of the
value p in proof of Theorem 5 will solve this obstacle. �

Theorem 5: Let Σ be an alphabet and L : Σ∗ → [0, 1]. If L is
a ROWJFFA-language, then there is a number p (the pumping
length) where, if w is any string of length at least p such that
L(w) > 0, then there is a permutation P (w) of w which can
be divided into three substrings, P (w) = xyz, satisfying the
following conditions:

(i) |y| > 0,
(ii) |xy| ≤ p,

(iii) for each i ≥ 0, L(w) = L(xyiz).

Proof: The proof can be performed as a slight modifica-
tion of proof of Theorem 4. To avoid the situation described
in Example 5, it suffices to set the pumping length p = kk+1

where k denotes the number of states of ROWJFFA accepting
the considered language L. (Note that there can be different
computational cycles and in a substring of w of length at least
k, there is present some cycle.) Clearly, every word of length
at least p contains at least ‘two runs of a particular cycle’. The
equalities in condition (iii) follow from deterministic way of
computation of every ROWJFFA, which concerns Part (A) in
the end of proof of Theorem 4 (where the determinism changes
all inequalities into equalities). Note that Part (A) deals with
words containing at least one substring whose reading starts
and finishes in the same state qk and our choice of p ensures
words having this property doubled.

V. CONCLUSION

In this paper, we introduced deterministic and nondeter-
ministic right one-way jumping fuzzy finite automata and
reminded jumping fuzzy finite automata. Pumping lemmata
for fuzzy languages accepted by these automata are formulated
and proved. Since every pumping lemma expresses a necessary
condition for a language to belong to the considered language
class, we obtained tools suitable for demonstrating that certain
languages cannot be described by the fuzzy automata under
consideration.

REFERENCES

[1] A. Meduna and P. Zemek, “Jumping finite automata,” Int. J. Found.
Comput. Sci., vol. 23, 2012, pp. 1555–1578.

[2] H. Chigahara, S.Z. Fazekas, and A. Yamamura, “One-way jumping finite
automata,” Int. J. Found. Comput. Sci., vol. 27, 2016, pp. 391–405.

[3] S.Z. Fazekas, K. Hoshi, and A. Yamamura, “Enhancement of automata
with jumping modes,” In: Cellular Automata and Discrete Complex
Systems, Proceedings of 25th IFIP WG 1.5 International Workshop on
Cellular Automata and Discrete Complex Systems, AUTOMATA 2019,
A. Castillo-Ramirez, P.P.B. de Oliveira, Eds., Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 11525 LNCS, 2019, pp. 62-76.

[4] K. Mahalingam, U. K. Mishra, and R. Raghavan, “Watson-Crick Jumping
Finite Automata,” Int. J. Found. Comput. Sci., vol. 31, no. 7, 2020, pp.
891–913.

[5] B. Nagy and F. Otto, “Linear automata with translucent letters and linear
context-free trace languages,” RAIRO - Theor. Inf. Appl., vol. 54, 2020,
article no. 3.

Authorized licensed use limited to: Tomas Bata University in Zlin. Downloaded on January 28,2025 at 14:28:59 UTC from IEEE Xplore. Restrictions apply.

[6] P. Martinek, “Jumping Fuzzy Finite Automata and Their Languages,”
In: Fuzzy Systems and Data Mining IV, Proceedings of the 4th Inter-
national Conference on Fuzzy Systems and Data Mining (FSDM 2018),
A. J. Tallón-Ballesteros, K. Li, Eds., Frontiers in Artificial Intelligence
and Applications, vol. 309, Amsterdam: IOS Press, 2018, pp. 196–201.

[7] J. R. González de Mendı́vil, J. R. Garitagoitia, “Fuzzy languages with
infinite range accepted by fuzzy automata: Pumping lemma and deter-
minization procedure,” Fuzzy Sets Syst., vol. 249, 2014, pp. 1–26.

[8] D. S. Malik and J. N. Mordeson, “On Fuzzy Regular Languages,” Inf.
Sci., vol. 88, 1996, pp. 263–273.

[9] A. Salomaa, Formal Languages, Academic Press, New York, 1973.
[10] D. Wood, Theory of Computation, Addison-Wesley, Boston, 1987.
[11] S. Beier and M. Holzer, “Properties of right one-way jumping finite

automata,” In: DCFS 2018, S. Konstantinidis, G. Pighizzini, Eds., LNCS,
vol. 10952, Springer, Heidelberg, 2018, pp. 11–23.

[12] S. Beier and M. Holzer, “Nondeterministic right one-way jumping finite
automata,” Inf. Comput., vol. 284, 2022, article no. 104687.

[13] S. Beier and M. Holzer, “Properties of right one-way jumping finite
automata,” Theor. Comput. Sci., vol. 798, 2019, pp. 78–94.

[14] P. Martinek, “Fuzzy multiset finite automata: Determinism, languages,
and pumping lemma,” In: 2015 12th International Conference on Fuzzy
Systems and Knowledge Discovery, FSKD 2015, article no. 7381915, pp.
60–64.

[15] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, 2nd ed., Upper Saddle River:
Pearson Addison Wesley, 2003.

[16] M. Sipser, Introduction to the Theory of Computation, 2nd ed., Boston:
Thomson Course Technology, 2006.

[17] D. W. Qiu, “Pumping lemma in automata theory based on complete
residuated lattice-value logic: A note,” Fuzzy Sets Syst., vol. 157, 2006,
pp. 2128–2138.

Authorized licensed use limited to: Tomas Bata University in Zlin. Downloaded on January 28,2025 at 14:28:59 UTC from IEEE Xplore. Restrictions apply.

