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Abstract: Application of Robust Control Toolbox for Time Delay Systems implemented in the Matlab 
system to the oscillating plant with uncertain time delay and astatism using the D-K iteration and 
algebraic approach. The algebraic approach combines the structured singular value, algebraic theory and 
algorithm of global optimization solving remaining issues in structured singular value framework. The 
algorithm for global optimization can be alternated with direct search methods such as Nelder-Mead 
simplex method giving solutions for problems with one local extreme. As a global optimization method, 
Differential Migration is used proving to be reliable in solving this type of problems. The D-K iteration 
represents a standard method in the structured singular value theory. The results obtained from the D-K 
iteration are compared with the algebraic approach. 
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1. INTRODUCTION 

Time delay systems are a constant issue present in control 
theory. In this paper, the problem of uncertain time delay in 
the oscillating plant with astatism is solved using Robust 
Control Toolbox for Time Delay Systems implemented in the 
Matlab system. The essential tool is the structured singular 
value denoted μ [see Packard and Doyle (1993)] giving a 
measure of robust performance and stability. The algebraic 
approach [see Dlapa et al. (2009), Dlapa and Prokop (2010) 
and Dlapa (2015)] and evolutionary algorithm Differential 
Migration [see Dlapa (2009)] are used treating the problem  
of multimodality of the cost function and impossibility of 
deriving controller for performance weights with poles on the 
imaginary axis. This implies that the final controller provides 
zero steady-state error being impossible in the scope of the 
standard tools using DGKF formulae for obtaining H∞
(sub)optimal controllers or other methods such as linear 
matrix inequality (LMI) approach leading to numerical 
problems in most of real world cases [see Doyle et al. (1989), 
Gahinet and Apkarian (1994) and Glover and Doyle (1988)]. 
The algebraic approach overcomes some difficulties connec-
ted with the D-K iteration, namely the fact that it does not 
guarantee convergence to a global or even local minimum 
[see Stein and Doyle (1991)]. Controllers obtained via the 
algebraic approach can have simpler structure due to the fact 
that there is no need of scaling matrices absorbance into 
generalized plant, hence, there is no need of further simplifi-
cation causing deterioration of the frequency properties of the 
resulting controller. Moreover, the controller structure can  
be chosen in advance being not possible in the scope of 
currently used methods.

Optimization is performed via evolutionary algorithm. Evolu-
tionary algorithms belong to the new branches of engineering 
[see Chughtai and Werner (2007), Goggos et al. (1999) and 
Patelli and Ferariu (2009)] providing solution to the problems 
being not solvable using traditional optimization tools. In this 
paper, a new evolutionary algorithm – Differential Migration 

is used having some favourable properties compared to the 
existing ones, namely the fact that lower computational time 
is needed for obtaining a suitable solution. 

In the proposed method, pole placement is performed via 
solving the Diophantine equation in the ring of Hurwitz-
stable and proper rational functions (RPS). The structured 
singular value assesses the robust stability and performance 
of the controller. 

For comparison reasons, the results obtained from the D-K
iteration [see Doyle (1985)] demonstrate the differences 
between the standard and proposed method. The overall 
performance is verified by simulations of step response for 
maximum values of time delays with simple feedback loop 
and two-degree-of-freedom structure with factorization of 
simple feedback controller to feed-forward, feedback and 
compensator part applicable to two-degree-of-freedom feed-
back interconnection [1DOF and 2DOF, see Dlapa (2021)]. 

The following notation is used: ||  || denotes H norm, )(
is maximum singular value, R and Cnm are real numbers and 
complex matrices, respectively, In is the unit matrix of 
dimension n and RPS denotes the ring of Hurwitz-stable and 
proper rational functions. 

2. PRELIMINARIES 

Define  as a set of block diagonal matrices 
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where  S, T is the number of repeated scalar complex and 
 real blocks, 

F, K is the number of full complex and real blocks, 
r1,, rS, r1,, rT, im1 ,, i

Fm , in1 ,, i
Kn , for i = 1, 2 

are positive integers defining dimensions of scalar and 
full blocks. 
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of the controller. 

For comparison reasons, the results obtained from the D-K
iteration [see Doyle (1985)] demonstrate the differences 
between the standard and proposed method. The overall 
performance is verified by simulations of step response for 
maximum values of time delays with simple feedback loop 
and two-degree-of-freedom structure with factorization of 
simple feedback controller to feed-forward, feedback and 
compensator part applicable to two-degree-of-freedom feed-
back interconnection [1DOF and 2DOF, see Dlapa (2021)]. 

The following notation is used: ||  || denotes H norm, )(
is maximum singular value, R and Cnm are real numbers and 
complex matrices, respectively, In is the unit matrix of 
dimension n and RPS denotes the ring of Hurwitz-stable and 
proper rational functions. 

2. PRELIMINARIES 

Define  as a set of block diagonal matrices 

}1,,1,,1,,1,

:],,,,,,,,,,,[diag{
2121
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nn
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

 RCRC

Δ




 (1) 

where  S, T is the number of repeated scalar complex and 
 real blocks, 

F, K is the number of full complex and real blocks, 
r1,, rS, r1,, rT, im1 ,, i

Fm , in1 ,, i
Kn , for i = 1, 2 

are positive integers defining dimensions of scalar and 
full blocks. 

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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For consistency among all the dimensions, the following 
condition must be held 
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Definition 1: For M  Cnm is μ(M) defined as 

}0)det(,:)(min{
1)(




MIΔ
MΔ 

  (3) 

If no such    exists making I – M singular then μ(M) = 
= 0. 

Consider a complex matrix M partitioned as 











2221

1211

MM
MM

M  (4) 

and suppose there is a defined block structure 2 which is 
compatible in size with M22 (for any 2  2, M222 is 
square). For 2  2, consider the following loop equations 

e = M11d + M12w
z = M21d + M22w (5) 
w = 2z
If the inverse to I – M222 exists, then e and d must satisfy 
e = FL(M, 2)d, where 

FL(M, 2) = M11 + M122(I – M222)–1M21 (6) 
is a linear fractional transformation on M by 2, and in a 
feedback diagram appears as the loop in Fig. 1. 

The subscript L on FL pertains to the lower loop of M and is 
closed by 2. An analogous formula describes FU(M, 1), 
which is the resulting matrix obtained by closing the upper
loop of M with a matrix 1  . 

wz

e d

Fig. 1. LFT interconnection 

Theorem 1: Let  > 0. For all 2  2 with 


 1)( 2  , the 

loop shown in Fig. 1 is well-posed, internally stable, and 



),( 2MFL  if and only if 







)]([sup jM  (7) 

with 2211
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1 ,,
Δ0
0Δ

Δ ΔΔ 
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




 . 

Proof: Proof is the same as in Doyle et al. (1982) and Pac-
kard and Doyle (1993) except for the fact that perturbations 
are complex matrices, which simplifies the proof and com-
plies with the definition of μ-function. 

3. ALGEBRAIC - SYNTHESIS 

The algebraic μ-synthesis can be applied to any control 
problem that can be transformed to the loop in Fig. 2, where 
G denotes the generalized plant, K is the controller, del is the 
perturbation matrix, r is the reference and e is the output. 

Fig. 2. Closed loop interconnection 

For the purposes of the algebraic μ-synthesis, the MIMO 
system with l inputs and l outputs has to be decoupled into l
identical SISO plants. The nominal model is defined in terms 
of transfer functions: 


















)()(

)()(
)(

1

111

sPsP

sPsP
s

lll

l

nom







P  (8)

For decoupling the nominal plant Pnom (Pnom invertible) it is 
satisfactory to have the controller in the form 

)]([
)(

1)()( sadj
sP

sKs nom
xy

l PIK   (9) 

where Pxy is an element of adj[Pnom(s)] = det[Pnom(s)][Pnom(s)]–1

with the highest degree of numerator {adj[Pnom(s)] denotes 
adjugate matrix of Pnom}. The choice of the decoupling 
matrix prevents the controller from cancelling any poles or 
zeros from the right half-plane so that internal stability of the 
nominal feedback loop is held. The MIMO problem is reduced 
to finding a controller K(s) which is tuned via setting the 
poles of the nominal feedback loop with the plant 
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Define 
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Transfer function Pdec can be approximated by a system *
decP

with lower order than Pdec

)(
)()(
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which can be rewritten in terms of its coefficients and trans-
formed to the elements of RPS
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, A, B  RPS (13)
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The controller K = NK/DK is obtained by solving the Dio-
phantine equation 

ADK + BNK = 1 (14) 
with A, B, DK, NK  RPS. Equation (14) is often called the 
Bezout identity. All feedback controllers NK/DK are given by 

BTD
ATN

D
NK

K

K

K

K






0

0 ,     PS00
, RKK DN  (15) 

where PS00
, RKK DN  are particular solutions of (14) and T

is an arbitrary element of RPS. 

The controller K satisfying equation (14) guarantees the 
BIBO (bounded input bounded output) stability of the feed-
back loop in Fig. 3. This is a crucial point for the theorems 
regarding the structured singular value. If the BIBO stability 
is held, then the nominal model is internally stable and theo-
rems related to robust stability and performance can be used. 
The BIBO stability also guarantees stability of FL(G, K) 
making possible usage of performance weights with integra-
tion property implying non-existence of state space solutions 
using DGKF formulae [see Doyle et al. (1989)] due to zero 
eigenvalues of appropriate Hamiltonian matrices. Such 
procedure, however, results in zero steady-state error in the 
feedback loop with the controller obtained as a solution to 
equation (14). This technique is neither possible in the scope 
of the standard μ-synthesis using DGKF formulae, nor using 
LMI approach [see Gahinet and Apkarian (1994)] leading to 
numerical problems in most of real-world applications. 

The aim of synthesis is to design a controller which satisfies 
the condition: 
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, ω[0,∞) (16)

where u
  denotes upper bound μ, ω is angular velocity in 

Fourier transform, n + n1 + n2 is the order of the nominal 
feedback system, n1 is the order of particular solution K0, ti

are arbitrary parameters in 
)()(
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and µ denotes the structured singular value of LFT on 
generalized plant G and controller K. 

k
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B

Fig. 3. Nominal feedback loop 

Tuning parameters are positive and constrained to the real 
axis since parameters of the transfer function have to be real 
and due to the fact that non-real poles cause oscillations of 
the nominal feedback loop. 

A crucial problem of the cost function in (16) is the fact that 
many local extremes are present. Hence, local optimization 
does not yield a suitable or even stabilizing solution. This can 

be overcome via evolutionary optimization solving the task 
very efficiently. 

4. PROBLEM FORMULATION 

The problem to solve is general 3rd order system with 
uncertain time delay: 
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The control objective is to find a controller that guarantees 
the robust stability and performance for every plant from the 
set P. The time delay is treated by multiplicative uncertainty 
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then for the weighting function W2 the following inequality 
must be held 
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The weight W2 is defined as an envelope curve of 1  je . 

5. PROBLEM SOLUTION 

5.1 Structured Singular Value Framework 

The problem defined in previous section can be solved using 
interconnection in Fig. 4. Here, G denotes the generalized 
plant partitioned to 











2221

1211

GG
GG

G  (22) 

where the block structure of G corresponds with the input 
and output variables in Fig. 4: 
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The design objective is to find a stabilizing controller K such 
that 
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is minimal, where 

21
1

221211 )1()( GGGG,FM  KGKKl  (25) 

is the lower linear fractional transformation on generalized 
plant G and controller K (see Fig. 4). 
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Fig. 4. Closed-loop interconnection for μ-synthesis 

5.2 Algebraic Approach 

The controller 
K

K

D
NK   is obtained by solving the Dio-

phantine equation (14). 

By the analysis of the polynomial degrees of a and b, the 
transfer functions A, B, DK and NK were chosen so that the 
number of closed loop poles is minimal and the asymptotic 
tracking is achieved: 
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where n is the actual degree of polynomial a obtained by 
omitting zero parameters ai. 

The resulting controller has the general PID structure: 
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6. EXAMPLE OF TIME DELAY SYSTEM CONTROL 

The plant family is defined as 3rd order oscillating system 
with uncertain time delay and first order astatism: 
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The control objective is to find a controller that will 
guarantee the robust stability and performance for every plant 
from the set P. The time delay is treated by multiplicative 
uncertainty 
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For the weighting function W2, the following inequality must 
be held 
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equivalent with 
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The weight W2 can be defined as envelope curve of 10  jTe

for T0 = 0.5 (see Fig. 5): 
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The performance condition is of the form: 
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where S is the sensitivity function and weight W1 is designed 
so that the asymptotic tracking is achieved: 
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Fig. 5. Bode plot of W2 (dashed) and 15.0  je  (full) 

6.1 Algebraic Approach 

The controller 
K

K

D
NK   is obtained by solving the Diophantine 

equation (14). By the analysis of the polynomial degrees of a
and b, the transfer functions A, B, DK and NK were chosen so 
that the number of closed loop poles is minimal and the 
asymptotic tracking is achieved: 
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and degrees of polynomials dk, nk are: 

∂dk = 2, ∂nk = 3 (39) 
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The resulting controller has general PID structure: 
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By the optimization of the negated poles αi via the Differen-
tial Migration, resulting negated poles were obtained: 
α1 = 2.768, α2 = 0.997, α3 = 0.705, α4 = 0.608, α5 = 0.561, α5 = 0.485 (41) 
yielding the controller 
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6.2 D-K Iteration 

In order to satisfy state-space formulae assumptions for H

suboptimal controller the performance weight W1 has to be 
modified so that it does not have integrating behaviour: 
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The controller obtained from the D-K iteration was appro-
ximated by 5th order transfer function: 
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The upper bound μ-plot in Fig. 6 shows that both controllers 
have the supremum of upper bound μ below one and the 
robust stability and performance condition is satisfied with 
maximum values: 
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Fig. 6. Upper bound μ-plot for the controllers obtained by the 
D-K iteration and algebraic approach 

6.3 Factorization for 2DOF feedback loop 

The controllers for 2DOF feedback loop (Fig. 7a, 7b - 
algebraic approach and D-K iteration, respectively) have the 
compensator (nk2, dk2, nkdk2, dkdk2) defined as fraction of the 
factors corresponding with most stable zero and least stable 
pole of KA and KD-K and feedback (nk1, dk1, nkdk1, dkdk1) and 
feed-forward part (nFW, dk1, nFWdk, dkdk1) defined by the 
fraction of the factors corresponding with remaining zeros 
and poles of KA and KD-K with 0,1kFW nn   and 0,1kdkFWdk nn 

( 0,1kn , 0,1kdkn being the coefficients of nk1 and nkdk1 of zero 
exponent of s): 
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Fig. 7. 2DOF feedback loop 

6.4 Comparison Study 

Simulations for the maximum time delay 2DOF and simple 
feedback loop in Fig. 8, 9, 10 and 11 show that both the 
algebraic approach and D-K iteration controllers yield stable 
response. The algebraic approach gives similar results with 
D-K iteration for simple feedback loop with 100% overshoot 
compared to 75% for the reference method but lower number 
of oscillations. The D-K iteration has no overshoot for 2DOF 
feedback loop but 1000 times longer time needed for 
reaching steady state with non-zero steady state tracking error 
compared to algebraic approach with zero steady state 
tracking error but 80% overshoot. 

Fig. 8. Simulation for simple feedback loop – D-K iteration 
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Fig. 9. Simulation for simple feedback loop algebraic 
approach 
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Fig. 10. Simulation for 2DOF feedback loop – D-K iteration 
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Fig. 11. Simulation for 2DOF feedback loop – algebraic 
approach 

7. DOWNLOAD 

The Robust Control Toolbox for Time Delay Systems tool-
box can be downloaded from http://dlapa.cz/homeeng.htm. 

8. CONCLUSION 

The paper showed usage of the Robust Control Toolbox for 
Time Delay Systems for the Matlab system. An outline of the 
algebraic approach was given with application to time delay 
plant with oscillating poles and first order astatism in 
nominal model. The plots and simulations of control using 
the presented Matlab toolbox showed the benefits of the 
algebraic approach in comparison with the D-K iteration  
as the reference procedure for robust control design using 
structured singular value. 
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