Publikace UTB
Repozitář publikační činnosti UTB

Conductivity of polyaniline/1,2,4-trichlorobenzene composites during freezing and melting transitions

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Conductivity of polyaniline/1,2,4-trichlorobenzene composites during freezing and melting transitions en
dc.contributor.author Sáha, Petr
dc.contributor.author Vilčáková, Jarmila
dc.contributor.author Quadrat, Otakar
dc.contributor.author Stejskal, Jaroslav
dc.relation.ispartof Physica A
dc.identifier.issn 0378-4371 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2001
utb.relation.volume 301
utb.relation.issue 1-4
dc.citation.spage 29
dc.citation.epage 36
dc.type article
dc.language.iso en
dc.publisher Elsevier Science B.V. en
dc.identifier.doi 10.1016/S0378-4371(01)00428-9
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0378437101004289
dc.subject conductivity cs
dc.subject polyaniline cs
dc.subject 1,2,4-trichlorobenzene cs
dc.subject polymer composite cs
dc.subject suspension cs
dc.subject organization of particles cs
dc.subject electric field cs
dc.subject percolation cs
dc.subject conductivity en
dc.subject polyaniline en
dc.subject 1,2,4-trichlorobenzene en
dc.subject polymer composite en
dc.subject suspension en
dc.subject organization of particles en
dc.subject electric field en
dc.subject percolation en
dc.description.abstract Polyaniline suspensions in 1,2,4-trichlorobenzene produced solid composites after freezing. Changes in electric conductivity after the solidification and during the melting transition have been investigated in dependence on conducting polymer concentration. Below the percolation threshold, the conductivity of frozen composites was lower than that of original suspensions. If conducting particle concentration was above this critical value, then the conductivity increased after the suspension froze. Conductivity both in the liquid and in the solid state was higher when polyaniline particles in the suspensions were polarized in electric field. In this case, conductive pathways connecting the electrodes were produced by organized particle chains. (C) 2001 Elsevier Science BN. All rights reserved. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1000033
utb.identifier.rivid RIV/70883521:28110/01:63500236
utb.identifier.obdid 11051820
utb.identifier.scopus 2-s2.0-0035576048
utb.identifier.wok 000172594500003
utb.source j-riv
utb.contributor.internalauthor Vilčáková, Jarmila
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Jarmila Vilčáková a , Petr Sáha a , Otakar Quadrat b;∗ , Jaroslav Stejskal b a Thomas Bata University in Zlín, Faculty of Technology, 762 72 Zlín, Czech Republic b Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Sq.2, 162 06 Prague 6, Czech Republic ∗ Corresponding author. Tel.: +42-02-2040-3360; fax: +42-02-367-981. E-mail address: quadrat@imc.cas.cz (O. Quadrat).
utb.fulltext.dates Received 17 January 2001
utb.fulltext.references [1] D.C. Trivedi, Polyanilines, in: H.S. Nalwa (Ed.), Handbook of Organic Conductive Molecules and Polymers, Vol. 2, Wiley, Chichester, UK, 1997, pp. 505–572 (Chapter 12). [2] C.J. Gow, C.F. Zukoski, J. Colloid, Interface Sci. 136 (1990) 175. [3] K. Koyama, K. Minagawa, T. Yoshida, N. Kuramoto, Mod. Phys. Lett. B 8 (1994) 1563. [4] H.Q. Xie, J.G. Guan, Angew. Makromol. Chem. 235 (1996) 21. [5] S. Wu, S. Lu, J. Shen, Polym. Int. 41 (1996) 363. [6] J.W. Goodwin, G.M. Markham, B. Vincent, J. Phys. Chem. B 101 (1997) 1961. [7] H.J. Choi, T.V. Kim, M.S. Cho, S.G.H. Kim, M.S. Jhon, Eur. Polym. J. 33 (1997) 699. [8] H.J. Choi, M.S. Cho, K. To, Physica A 254 (1998) 272. [9] N. Kuramoto, M. Yamazaki, K. Nagai, K. Koyama, Thin Solid Films 219 (1994) 169. [10] N. Kuramoto, M. Yamazaki, K. Nagai, K. Koyama, K. Tanaka, H. Yatsuzuka, Y. Higashiyama, Rheol. Acta 34 (1995) 298. [11] P.N. Adams, P.J. Laughlin, A.P. Monkman, Synth. Met. 76 (1996) 157. [12] Y. Cao, P. Smith, A.J. Heeger, Synth. Met. 55 –57 (1993) 3514.) Urková, O. Quadrat, P. Kratochvíl, Polym. Int. 44 (1997) 283. [13] J. Stejskal, M. Špírková, J. Stejskal, O. Quadrat, Synth. Met. 102 (1999) 1264. [14] M. Špírková, J. Stejskal, O. Quadrat, Synth. Met. 102 (1999) 1264. [15] J. Wojturski, J. Stejskal, P. Kratochvíl, P. Sáha, Croat. Chem. Acta 71 (1998) 873. [16] O. Quadrat, J. Stejskal, P. Kratochvíl, C. Klason, D. McQueen, J. Kubát, P. Sáha, Synth. Met. 97 (1998) 37. [17] H. Scher, R. Zallen, J. Chem. Phys. 53 (1970) 3759. [18] J. Prokeš, I. Křivka, J. Stejskal, Polym. Int. 43 (1997) 117. [19] P. Ghosh, S.K. Siddhanta, A. Chakrabarti, Eur. Polym. J. 35 (1999) 699. [20] I. Křivka, J. Prokeš, E. Tobolková, J. Stejskal, J. Mater. Chem. 9 (1999) 425.
utb.fulltext.sponsorship The authors wish to thank the Grant Agency of the Academy of Sciences of the Czech Republic (A4050907) for the 3nancial support.
utb.wos.affiliation Thomas Bata University in Zlõn, Faculty of Technology, 762 72 Zlõn, Czech Republic; Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Sq.2, 162 06 Prague 6, Czech Republic
utb.fulltext.projects A4050907
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam