Publikace UTB
Repozitář publikační činnosti UTB

Structure analysis of montmorillonite intercalated with cetylpyridinium and cetyltrimethylammonium: Molecular simulations and XRD analysis

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Structure analysis of montmorillonite intercalated with cetylpyridinium and cetyltrimethylammonium: Molecular simulations and XRD analysis en
dc.contributor.author Pospíšil, Miroslav
dc.contributor.author Čapková, Pavla
dc.contributor.author Měřínská, Dagmar
dc.contributor.author Maláč, Zdeněk
dc.contributor.author Šimoník, Josef
dc.relation.ispartof Journal of Colloid and Interface Science
dc.identifier.issn 0021-9797 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2001
utb.relation.volume 236
utb.relation.issue 1
dc.citation.spage 127
dc.citation.epage 131
dc.type article
dc.language.iso en
dc.publisher Elsevier en
dc.identifier.doi 10.1006/jcis.2000.7360
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0021979700973600
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0021979700973600/pdf?md5=9dfec4821db9c13e3f3af3cc71949581&pid=1-s2.0-S0021979700973600-main.pdf
dc.subject montmorillonit cs
dc.subject povrchově aktivní látka cs
dc.subject interkalace cs
dc.subject cetylpyridinium cs
dc.subject cetytrimetylamonium cs
dc.subject Montmorillonite en
dc.subject cationic surfactants en
dc.subject intercalation en
dc.subject cetylpyridinium en
dc.subject cetyltrimetylpyridinium en
dc.description.abstract Molecular mechanics and molecular dynamics simulations combined with X-ray powder diffraction were used in srtucture investigation of montmorillonite intercalated with cetylpyridinium(CP) and cetyltrimetylammonium (CTA) cations. Molecular modeling revealed the interlayer strusture and differences in intercalation behavior of CP and CTA cations in montmorillonite. The experimental and calculated values of basal spacing were in good agreement for both intercalates: in the case of CP-montmorillonite d(exp) = 20.59 A, d(calc) = 20,60A en
dc.description.abstract for CTA montmorillonite d(exp) = 18,00 A, d(calc) = 18,10 A. CTA-montmorillonite exhibits significantly higher total sublimation energy and higher host-guest interation energy than the CP montmorillonite. The main difference between both intercalates is in charge distribution on the host layers and guest species. The charge transfet from the guest species to the host layer is higher in CTA-montmorillonite than in CP - montmorillonite, and consequently the charge polarization between the host and guest layers is much higher in CTA-montmorillonite\This leads to the much stronger host-guest electrostatic interaction in the case of the CTA-montmorillonite. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1000074
utb.identifier.rivid RIV/70883521:28110/01:63500389
utb.identifier.obdid 11052072
utb.identifier.wok 000167643900017
utb.source j-riv
utb.contributor.internalauthor Měřínská, Dagmar
utb.contributor.internalauthor Maláč, Zdeněk
utb.contributor.internalauthor Šimoník, Josef
utb.fulltext.affiliation Miroslav Pospíšil,∗ Pavla Čapková a,∗,1 Dagmar Měřínská,† Zdeněk Maláč,† and Josef Šimoník† ∗ Faculty of Mathematics and Physics, Charles University Prague, Ke Karlovu 3, 121 16 Prague 2, Czech Republic; and † Faculty of Technology Zlín, Technical University Brno, Náměstí T.G. Masaryka 275, 762 72 Zlín, Czech Republic 1 To whom correspondence should be addressed.
utb.fulltext.dates Received July 10, 2000; accepted November 27, 2000
utb.fulltext.references 1. Lagaly, G., and Weiss, A., Clay Clay Miner. 20, 637 (1972). 2. Tahani, A., Karroua, M., van Damme, H., Levitz, P., and Bergaya, F., J. Colloid Interface Sci. 216, 242 (1999). 3. Pinavaia, T. J., Tzou, M. S., and Landau, S. D., J. Am. Chem. Soc. 107, 4783 (1985). 4. Li, F., and Rosen, M. J., J. Colloid Interface Sci. 224, 265 (2000). 5. Chattopadhyay, S., and Traina, S. J., J. Colloid Interface Sci. 225, 307 (2000). 6. Patzkó, Á., and Dékány, I., Colloids Surf. A 71, 299 (1993). 7. Pan, J., Yang, G., Han, B., and Yan H., J. Colloid Interface Sci. 194, 276 (1997). 8. Lee, J. F., Mortland, M. M., Chiou, C. T., Kile, D. E., and Boyd, S. A., Clays Clay Miner. 38, 113 (1990). 9. Jaynes, W. F., and Boyd, S. A., Soil Sci. Soc. Am. J. 55, 43 (1991). 10. Seki, T., and Ichimura, K., Macromolecules 23, 31 (1990). 11. Boyd, S. A., Mortland, M. M., and Chiou, C. T., Soil Sci. Soc. Am. J. 52, 652 (1988). 12. Lee, J. F., Crum, J. R., and Boyd, S. A., Environ. Sci. Technol. 23, 1365 (1989). 13. Rheinländer, T., Klumpp, E., Rossbach, M., and Schwuger, M. J., Prog. Colloid Interface Sci. 89, 1999 (1992). 14. Kibbey, T. C. G., and Hayes, K. F., Environ. Sci. Technol. 27, 2168 (1993). 15. Ogawa, M., and Kuroda, D., Chem. Rev. 95, 399 (1995). 16. Beall, G. W., and Tsipursky S. J., “Nanocomposites Produced Utilizing a Novel Ion-Dipole Clay Surface Modification.” Nanocor Inc., Arlington Heights, IL, 1998. 17. Čapková, P., Janeba, D., Trchová, M., Driessen, R. A. J., Schenk, H., Weiss, Z., and Klika Z., Mater. Sci. Forum 278–281, 791 (1998). 18. Hackett, E., Manias, E., and Giannelis, E. P., J. Chem. Phys., 108, 7410 (1998). 19. Chang, F.-R. C., Skipper, N. T., Refson, K., Greathouse, J. A., and Sposito, G., in “MineralWater Interface Reactions” (D. L. Sparks, T. Grundl, Eds.), Chap. 6. Am. Chem. Soc., Washington, DC, 1998. 20. Park, S.-H., and Sposito, G., J. Phys. Chem. B 104, 4642 (2000). 21. Kužel, R., Jr., “Difpatan, computer program for X-ray powder diffraction profile analysis.” Faculty of Mathematics and Physics, Charles University Prague, Czech Republic, 1991. 22. Xu, S., and Boyd, S. A., Langmuir 11, 2508 (1995). 23. Tsipursky, S. J., and Drits, V. A., Clay Miner. 19, 177 (1984). 24. Méring, J., and Oberlin A., Clays Clay Miner. 27, 3 (1967). 25. “Cerius2 User Guide.” Molecular Simulations Inc., San Diego, 1997. 26. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., and Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992). 27. Karasawa, N., and Goddard, W. A., III, J. Phys. Chem. 93, 7320 (1989). 28. Rappe, A. K., and Goddard, W. A., III, J. Phys. Chem. 95, 3358 (1991). 29. Pruissen, D. J., Čapková, P., Driessen, R. A. J., and Schenk, H., Appl. Catal. A 193, 103 (2000). 30. Pospášil,M., and Čapková, P., in “WDS 00—Proceedings of contributed papers, Conference:Week of doctoral students, June 2000, Part III,” pp. 407– 411. (J. Šafránková, Ed.). MATFYZPRESS, Prague, 2000.
utb.fulltext.sponsorship This work was supported by the Grant Agency of Czech Republic GAČR, Grant 205/99/0185.
utb.fulltext.projects GACR 205/99/0185
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam