Kontaktujte nás | Jazyk: čeština English
dc.title | Biotransformation of trichloroethene by pure bacterial cultures | en |
dc.contributor.author | Růžička, Jan | |
dc.contributor.author | Muller, J. | |
dc.contributor.author | Vít, D. | |
dc.contributor.author | Hutěčka, V. | |
dc.contributor.author | Hoffmann, Jaromír | |
dc.contributor.author | Daťková, H. | |
dc.contributor.author | Němec, M. | |
dc.relation.ispartof | Folia Microbiologica | |
dc.identifier.issn | 0015-5632 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2002 | |
utb.relation.volume | 47 | |
utb.relation.issue | 5 | |
dc.citation.spage | 467 | |
dc.citation.epage | 472 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Česká společnost mikrobiologická/Československá společnost mikrobiologická | cs |
dc.identifier.doi | 10.1007/BF02818782 | |
dc.relation.uri | http://www.springerlink.com/content/w88t748736525681/ | |
dc.subject | trichloroethylen | cs |
dc.subject | dimethyldisulfid | cs |
dc.subject | bakterie | cs |
dc.subject | biotransformace | cs |
dc.subject | trichloroethylene | en |
dc.subject | dimethyl disulfide | en |
dc.subject | bacteria | en |
dc.subject | biotransformation | en |
dc.description.abstract | From natural samplex eleven isolates were obtained which were capable of cometabolic degradation of trichlsoroethylene (TCE) by an enzyme system for phenol degradation. At an initial TCE concentration of 1 mg/l, the resting cells of particular cultures degraded 33 - 94 % TCE in 24 hours and their transformation capacities ranged from 0.3 to 3.1 mg TCE/g organic fraction. Further an analysis of a mixed phenol-fed culture with an excellent TCE-degrading ability was performed. A markedly minority isolate represented in the consortium was found to be responsible for this property. This culture, designated RF2, degraded TCE even at a low inoculum density and attained a transformation capacity of 14.7 mg TCE/g. The increase in chslorides concentration after degradation was quantitative when compared with the decrease in organically bound chlorine. Attention was further given to the effect of dimethyldisulphide on the degree of TCE degradation while proving this substance can significantly reduce dthe degrading ability of some tested cultures (as much as 60 %) | en |
dc.description.abstract | however, it does not cause this inhibition with others. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1000112 | |
utb.identifier.rivid | RIV/70883521:28110/02:63500566 | |
utb.identifier.obdid | 11052447 | |
utb.identifier.scopus | 2-s2.0-0036361864 | |
utb.identifier.wok | 000179431200001 | |
utb.source | j-riv | |
utb.contributor.internalauthor | Růžička, Jan | |
utb.contributor.internalauthor | Hoffmann, Jaromír | |
utb.fulltext.affiliation | J. RŮŽIČKA a, J. MÜLLER a, D. VÍT a, V. HUTĚČKA a, J. HOFFMANN a, H. DAŤKOVÁ b, M. NĚMEC c a Department of Environmental Technology and Chemistry, Tomáš Baťa University, 762 72 Zlín, Czechia b Institute for Testing and Certification, 764 21 Zlín-Louky, Czechia c Department of Microbiology, Masaryk University, 602 O0 Brno, Czechia | |
utb.fulltext.dates | Received 19 September 2001 Revised version 6 March 2002 | |
utb.fulltext.references | ARCIERO D., VANNELLI T., LOGAN M., HOOPER A.B.: Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem.Biophys.Res. Commun. 159, 640-643 (1989). CHANG H.L., ALVAREZ-COHEN L.: Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene or phenol. BioteclmoLBioeng. 45, 440-449 (1995). DABROCK B., RAVEL J., BERTRAM J., Go'rrscrtALK G.: Isopropylbenzene (cumene) -- a new substrate for the isolation of trichloroethene-degrading bacteria. Arch.Microbiol. 158, 9-13 (1992). ENSIGN S.A., H'OaA~ M.R., Am' DJ.: Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl.Environ.Microbiol. 58, 3038-3046 (1992). FOLSOM B.R, CHAPMAN PJ., PRITCHARD P.H.: Phenol and trichloroethylene degradation byPseudomonas cepacia G4: kinetics and interaction between substrates. AppLEnviron.Microbiol. 56, 1279-1285 (1990). FRIES M.IL, FORNEY LJ., TmDJE J.M.: Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. ApptEnviron.Microbiol. 63, 1523-1530 (1997). FUTAMATA H., WATANABE IC, HARAYAMA S.: Relationships between the triehloroethylene-degrading activities and the amino acid sequences of phenol hydroxylases in phenol-degrading bacteria. Battelle 1st Internat. Conf. on Remediation of Chlorinated and Recalcitrant Compounds, Monterey (CA) 1998. GINZBURG B., CttALIFA I., HADAS O., DOR I., LEV O.: Formation of dimethyloligosulfides in lake Kinneret. Water Sci.Technol. 40, 73-78 (1999). GINZBURG B., CHALIFA I., ZOHARI T., HADAS O., DOR I., LEV O.: Identification of oligosulfide odorous compounds and their source in the sea of Galilee. WaterRes. 32, 1789-1800 (1998). HOPKINS G.D., MUNAKATA J., SEMPRINI L., McCARTY P.L.: Trichloroethylene concentration effects on pilot field-scale in situ groundwater bioremediation by phenol-oxidizing microorganisms. Environ.Sci.Technol. 27, 2542-2547 (1993). HOPKINS G.D., MCCARTY P.L.: Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ.Sci.Technol. 29, 1628-1637 (1995). ISHIDA H., NAKAMURA K.: Trichloroethylene degradation by Ralstonia sp. KNI-10A constitutively expressing phenol hydroxylase: transformation products, NADH limitation, and product toxicity. ZBiosci.Bioeng. 89, 438-445 (2000). IWASAKI I., UTSUMI S., OZAWA T.: New colorimetrie determination of chloride using mercuric thiocyanate and ferric ions. Bull. Chem.Soc.Japan 25, 226 (1952). KYUNO K.H., FLEMING H.P.: Antimicrobial activity of sulphur compounds derived from cabbage. ZFood Prot. 60, 67-71 (1997). SAEKI H., AKIRA M., FURUHASHI K., AVERHOFF B., GOTTSCHALK G.: Degradation of trichloroethylene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiology 145, 1721-1730 (1999). SCHÖLLER C., Moran S., WILKINS K.: Volatile metabolites from some gramnegative bacteria. Chemospl~,re 35, 1487-1495 (1997). SHIH C., DAVEY M.E., ZHOU J., TIEDJE J.M., CRIDDLE C.S.: Effects of phenol feeding pattern on microbial community structure and cometabolism of trichloroethylene.Appl.Environ.Microbiol. 62, 2953-2960 (1996). SHURTHFF M.M., PARKIN G.F., WEATHERS LJ., GIBSON D.T.: Biotransformation of trichloroethylene by a phenol-induced mixed culture. ZEnviron.Eng. 122, 581-589 (1996). STEFFAN R.J., SPERRY K.L., WALSH M.T., VAINBERO S., CONDEE C.W.: Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environ.Sci.Technol. 33, 2771-2781 (1999). SUN A.K., HONO J., WOOD T.K.: Modeling trichloroethylene degradation by a recombinant pseudomonad expressing toluene ortho-monooxygenase in a fixed-film bioreactor. BioteclmoLBioeng. 59, 40-51 (1998). SUN A.K., WOOD T.IC: Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b. AppLMicrobiol.Biotechnol. 45, 248-256 (1996). TAKAMI W., HORINOUCrll M., NoJIm H., YAXlANE H., OMOm T.: Evaluation of trichloroethylene degradation by E. coli transformed with dimethylsulphide monooxygenase genes and/or cumene dioxygenase genes. BiotechnoLLett. 21, 259-264 (1999). TOMITA B., INOUE H., CHAYA K., NAKAMURA A., HAMAMURA N., UENO K., WATANABE K., OSE Y.: Identification of dimethyl disulfide-forming bacteria isolated from activated sludge. AppLEnviron.MicrobioL 53, 1541-1547 (1987). VOGEL T.M., CRIDDLE C.S., McCARTY P.L.: Transformations of halogenated aliphatic compounds. Environ.Sci.Technol. 21, 722-736 (1987). WILSON J.T., WILSON B.H.: Biotransformation of trichloroethylene in soil. Appl.Environ.Microbiol. 49, 242-243 (1985). | |
utb.fulltext.sponsorship | - | |
utb.fulltext.projects | - |