Publikace UTB
Repozitář publikační činnosti UTB

Investigation on evolutionary synthesis of movement commands

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Investigation on evolutionary synthesis of movement commands en
dc.contributor.author Komínková Oplatková, Zuzana
dc.contributor.author Zelinka, Ivan
dc.relation.ispartof Modelling and Simulation in Engineering
dc.identifier.issn 1687-5591 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2009
utb.relation.volume 2009
utb.relation.issue 1
dc.citation.spage 1
dc.citation.epage 12
dc.type article
dc.language.iso en
dc.publisher Hindawi Publishing Corporation en
dc.identifier.doi 10.1155/2009/845080
dc.relation.uri http://www.hindawi.com/journals/mse/2009/845080.html
dc.subject analytické programování cs
dc.subject symbolická regrese cs
dc.subject optimalizace cs
dc.subject SOMA cs
dc.subject diferenciální evoluce cs
dc.subject simulované žíhání cs
dc.subject Analytic Programming en
dc.subject symbolic regression en
dc.subject optimization en
dc.subject Self-Organizing Migrating Algorithm en
dc.subject Differential Evolution en
dc.subject Simulated Annealing en
dc.description.abstract Tento článek se zabývá použitím alternativního příkazu pro symbolickou regresi - analytickým programováním (AP), které může být použito na různé problémy v doméně symbolických struktur stejně jako genetické programování či gramatická evoluce. V článku je popsáno AP a pak krok za krokem, jak bylo použito k řešení problému. Bylo provedeno 150 simulací se třemi evolučními algoritmy (SOMA, Diferenciální evoluce a simulované žíhání), které ukázaly, že SOMA a DE je mnohem úspěšnější, než ne příliš robustní simulované žíhání. cs
dc.description.abstract This paper deals with usage of an alternative tool for symbolic regression ? analytic programming which is able to solve various problems from the symbolic domain as well as genetic programming and grammatical evolution. This paper describes a setting of an optimal trajectory for a robot (originally designed as an artificial ant on Santa Fe trail) solved by means of analytic programming. Firstly, main principles of analytic programming are described and explained. The second part shows how analytic programming was used for the application of finding of a suitable trajectory step by step. Because analytic programming needs evolutionary algorithms for its run, three evolutionary algorithms were used ? Self Organizing Migrating Algorithm, Differential Evolution and Simulated Annealing ? to show that anyone can be used. The total number of simulations was 150 and results show that the first two used algorithms were more successful than not so robust Simulated Annealing. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1000716
utb.identifier.rivid RIV/70883521:28140/09:63507972!RIV10-MSM-28140___
utb.identifier.obdid 43861046
utb.identifier.scopus 2-s2.0-67650146265
utb.identifier.wok 000214739900009
utb.source j-riv
dc.description.sponsorship Ministry of Education of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic [MSM 7088352101]; Grant Agency of the Czech Republic GACRGrant Agency of the Czech Republic [102/09/1680]
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.rights.access openAccess
utb.contributor.internalauthor Komínková Oplatková, Zuzana
utb.contributor.internalauthor Zelinka, Ivan
utb.wos.affiliation [Oplatkova, Zuzana; Zelinka, Ivan] Tomas Bata Univ Zlin, Fac Appl Informat, Nad Stranemi 4511, Zlin 76272, Czech Republic
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Unported Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Unported