Publikace UTB
Repozitář publikační činnosti UTB

Electrorheology of Suspensions of Variously Protonated

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Electrorheology of Suspensions of Variously Protonated en
dc.contributor.author Stěnička, Martin
dc.contributor.author Pavlínek, Vladimír
dc.contributor.author Sáha, Petr
dc.contributor.author Blinova, Natalia V.
dc.contributor.author Stejskal, Jaroslav
dc.contributor.author Quadrat, Otakar
dc.relation.ispartof Applied Rheology
dc.identifier.issn 1430-6395 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2010
utb.relation.volume 20
utb.relation.issue 5
dc.citation.spage 1
dc.citation.epage 7
dc.type article
dc.language.iso en
dc.publisher Kerschensteiner Verlag GmbH en
dc.identifier.doi 10.3933/ApplRheol-20-55371
dc.relation.uri http://www.ar.ethz.ch/cgi-bin/AR/view?DOI=10.3933/ApplRheol-20-55371
dc.subject polyanilin cs
dc.subject elektroreologie cs
dc.subject ustálený smyk cs
dc.subject oscilační režim cs
dc.subject protonace cs
dc.subject Polyaniline en
dc.subject Electrorheology en
dc.subject Steady shear en
dc.subject Oscillatory mode en
dc.subject Protonation en
dc.description.abstract Název: Elektroreologie suspenzí různě protonovaných polyanilinových částic v ustáleném a oscilačním smykovém poli Byly sledovány elektroreologické (ER) a dielektrické vlastnosti silikonových suspenzí polyanilinových částic (PANI) protonovaných kyselinou fosforečnou nebo kyselinou tetrafluoroboritou do různých stupňů. Vodivost částic se tak liší v rozsahu od 10-9 S/cm do 10-4 S/cm. Dynamická prahová napětí z ustáleného smykového toku v režimu řízené rychlosti smykové deformace, elastický modul z oscilačních měření a dielektrický relaxační čas z frekvenční závislosti relativní permitivity a ztrátového úhlu pak byly použity pro srovnání pevnosti nebo elasticity ER struktur a pohyblivosti částic v elektrickém poli. Vodivost dispergovaných částic přitom hraje zásadní roli na jejich ER chování. ER efektivita vzrůstá se zvyšující se vodivostí dispergovaných částic, a to bez ohledu na druh kyseliny použité k protonaci PANI. cs
dc.description.abstract Title: Electrorheology of Suspensions of Variously Protonated Polyaniline Particles under Steady and Oscillatory Shear Electrorheological (ER) and dielectric properties of silicone-oil suspensions of polyaniline (PANI) particles protonated with phosphoric and tetrafluoroboric acids to various doping level have been investigated. The particle conductivity was thus varied between the order of 10-9 S/cm and 10-4 S/cm. The dynamic yield stresses obtained at controlled shear rate mode viscometry, the storage moduli from the oscillatory shear experiments and the dielectric relaxation times from frequency dependences of dielectric constant and loss factor were used as criteria of rigidity or elasticity of ER structures and particle mobility in the electric field. The conductivity of suspension particles plays a decisive role in their ER behaviour. The ER efficiency increased as conductivity of dispersed particles raised, irrespective of the type of employed acid used for the protonation of PANI. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1001201
utb.identifier.rivid RIV/70883521:28110/10:63509490!RIV11-GA0-28110___
utb.identifier.obdid 43864551
utb.identifier.scopus 2-s2.0-77957676088
utb.source j-riv
utb.contributor.internalauthor Stěnička, Martin
utb.contributor.internalauthor Pavlínek, Vladimír
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Martin Stenicka1 *, Vladimir Pavlinek1, Petr Sáha1, Natalie V. Blinova2,Jaroslav Stejskal2, Otakar Quadrat2 1 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, TGM 275, 762 72 Zlin, Czech Republic 2 Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic * Email: stenicka@ft.utb.cz Fax: x420.576.031444
utb.fulltext.dates Received: 11.11.2009 Final version: 4.1.2010
utb.fulltext.references [1] Winslow WM: US Patent 2 417 850 (1947). [2] Block H, Kelly JP: Electro-rheology, J. Phys. D-Appl. Phys. 21 (1988) 1661 – 1677. [3] Jordan TC, Shaw MT: Electrorheology, IEEE Trans. Electron. Insul. 24 (1989) 849 – 878. [4] Block H, Kelly JP, Qin A, Watson T: Materials and mechanisms in electrorheology, Langmuir 6 (1990) 6 – 14. [5] Conrad H, Sprecher AF: Characteristics and mechanisms of electrorheological fluids, J. Stat. Phys. 64 (1991) 1073 – 1091. [6] Blackwood KM, Block H: Semi-conducting polymers in electrorheology: a modern approach to smart fluids, Trends Polym. Sci. 14 (1993) 98 – 104. [7] Martin JE, Adolf D, Halsey TC: Electrorheology of a model colloidal fluid, J. Colloid Interface Sci. 167 (1994) 437 – 452. [8] Parthasarathy M, Klingenberg DJ: Electrorheology: mechanisms and models, Mater. Sci. Eng. R 17 (1996) 57 – 103. [9] See H: Mechanisms of magneto- and electro-rheology: recent progress and unresolved issues, Appl. Rheol. 11 (2001) 70 – 82. [10] Hao T: Electrorheological fluids, Adv. Mater. 13 (2001) 1847 – 1856. [11] Schneider S, Eibl S: Review of the electrorheological (ER) effect of polyurethane-based ER fluids, Appl. Rheol. 18 (2008) 23956 – 23963. [12] Pavlínek V, Sáha P, Kitano T, Tanegashima T: In - fluence of the electric field on the electrorheological behaviour of crystalline cellulose suspensions in silicone oil, Appl. Rheol. 9 (1999) 64 – 68. [13] Alanis E, Romero G, Martinez C, Alvarez L, Mechetti C: Characteristic times of microstructure formation in electrorheological fluids, determined by viscosity and speckle activity measurements, Appl. Rheol. 15 (2005) 38 – 45. [14] Sung JH, Cho MS, Choi HJ, Jhon MS: Electrorheology of semiconducting polymers, J. Int. Eng. Chem. 10 (2004) 1217 – 1229. [15] Park SM, Lee HJ: Recent advances in electrochemical studies of p-conjugated polymers, Bull. Korean Chem. Soc. 26 (2005) 697 – 706. [16] Cheng Q, Pavlínek V, Belza T, Lengálová A, He Y, Li C: The effect of polypyrrole loading on the electrorheological properties of polypyrrole/SBA-15 suspensions, Int. J. Mod. Phys. B 21 (2007) 5026 – 5032. [17] Quadrat O, Stejskal J: Polyaniline in electrorheology, J. Ind. Eng. Chem. 12 (2006) 352 – 361. [18] Pavlínek V, Sáha P, Peréz-González J, de Vargas L, Stejskal J, Quadrat O: Analysis of the yielding behaviour of electrorheological suspensions by controlled shear stress experiments, Appl. Rheol. 16 (2006) 14 – 18. [19] Stejskal J, Prokes J, Trchová M: Reprotonation of polyaniline: a route to various conducting polymer materials, React. Funct. Polym. 68 (2008) 1355 – 1361. [20] Choi HJ, Jhon MS: Electrorheology of polymers and nanocomposites, Soft Matter 5 (2009) 1562 – 1567. [21] MacDiarmid AG: Synthetic metals: a novel role for organic polymers, Synth. Met. 125 (2002) 11 – 22. [22] Sapurina I, Stejskal J: The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures, Polym. Int. 57 (2008) 1295 – 1325. [23] Blinova NV, Stejskal J, Trchová M, Prokes J: Control of polyaniline conductivity and contact angles by partial protonation, Polym. Int. 57 (2008) 66 – 69. [24] Jang WH, Kim JW, Choi HJ, Jhon MS: Synthesis and electrorheology of camphorsulfonic acid doped polyaniline suspensions, Colloid Polym. Sci. 279 (2001) 823 – 827. [25] Zhang Z, Wei Z, Wan M: Nanostructures of polyaniline doped with inorganic acids, Macromolecules 35 (2002) 5937 – 5942. [26] Hong CH, Choi HJ: Shear stress and dielectric analysis of H3 PO4 doped polyaniline based electrorheological fluid, J. Macromol. Sci. Part B-Phys. 46 (2007) 683 – 692. [27] Choi HJ, Cho MS, To K: Electrorheological and dielectrical characteristics of semiconductive polyaniline-silicone oil suspensions, Physica A 254 (1998) 272 – 279. [28] Lee KH, Park BJ, Song DH, Chin IJ, Choi HJ: The role of acidic m-cresol in polyaniline doped by camphorsulfonic acid, Polymer 50 (2009) 4372 – 4377. [29] Hwang JY, Cho MS, Choi HJ, Jhon MS: Synthesis of polyaniline using stabilizer and its electrorheological properties, Synth. Met. 135-136 (2003) 21 – 22. [30] Stenicka M, Pavlínek V, Sáha P, Blinova NV, Stejskal J, Quadrat O: Conductivity of flowing polyaniline suspensions in electric field, Colloid Polym. Sci. 286 (2008) 1403 – 1409. [31] Stejskal J, Gilbert RG: Polyaniline. Preparation of a conducting polymer (IUPAC technical report), Pure Appl. Chem. 74 (2002) 857 – 867. [32] Herschel WH, Bulkley R: Konsistenzmessungen von Gummi-Benzol-Lösungen, Kolloid Z. 39 (1926) 291 – 300. [33] Wu CW, Conrad H: A modified conduction model for the electrorheological effect, J. Phys. DAppl. Phys. 29 (1996) 3147 – 3153. [34] David LC: Polarization forces and conductivity effects in electrorheological fluids, J. Appl. Phys. 72 (1992) 1334 – 1340. [35] Lan Y, Xu X, Men S, Lu K: The conductivity dependence of the shear stress in electrorheological fluids, Appl. Phys. Lett. 73 (1998) 2908 – 2910. [36] Havriliak SJr, Havriliak SJ: Dielectric and mechanical relaxation in materials, Hanser, Munich (1997). [37] Cho MS, Cho YH, Choi HJ, Jhon MS: Synthesis and electrorheological characteristics of polyanilinecoated poly(methyl methacrylate) microspheres: size effect, Langmuir 19 (2003) 5875 – 5881. [38] Kim SG, Lim JY, Sung JH, Choi HJ, Seo Y: Emulsion polymerized polyaniline synthesized with dodecylbenzenesulfonic acid and its electrorheological characteristics: temperature effect, Polymer 48 (2007) 6622 – 6631.
utb.fulltext.sponsorship The acknowledgement for the financial support to the Ministry of Education, Youth and Sports of the Czech Republic (MSM 7088352101) and the Czech Grant Agency (202/09/1626).
utb.fulltext.projects MSM 7088352101
utb.fulltext.projects GA 202/09/1626
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Polymer Centre
utb.fulltext.ou Polymer Centre
utb.fulltext.ou Polymer Centre
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam