Publikace UTB
Repozitář publikační činnosti UTB

Anti-bacterial treatment of polyethylene by cold plasma for medical purposes

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Anti-bacterial treatment of polyethylene by cold plasma for medical purposes en
dc.contributor.author Popelka, Anton
dc.contributor.author Novák, Igor
dc.contributor.author Lehocký, Marián
dc.contributor.author Chodák, Ivan
dc.contributor.author Sedliačik, Ján
dc.contributor.author Gajtanska, Milada
dc.contributor.author Sedliačiková, Mariana
dc.contributor.author Vesel, Alenka
dc.contributor.author Junkar, Ita
dc.contributor.author Kleinová, Angela
dc.contributor.author Špírková, Milena
dc.contributor.author Bílek, František
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2012
utb.relation.volume 17
utb.relation.issue 1
dc.citation.spage 762
dc.citation.epage 785
dc.type article
dc.language.iso en
dc.publisher MDPI AG en
dc.identifier.doi 10.3390/molecules17010762
dc.relation.uri http://www.mdpi.com/1420-3049/17/1/762/
dc.subject polyethylene en
dc.subject grafting en
dc.subject plasma treatment en
dc.subject immobilization en
dc.subject triclosan en
dc.subject chlorhexidine en
dc.subject acrylic acid en
dc.description.abstract Polyethylene (PE) is one of the most widely used polymers in many industrial applications. Biomedical uses seem to be attractive, with increasing interest. However, PE it prone to infections and its additional surface treatment is indispensable. An increase in resistance to infections can be achieved by treating PE surfaces with substances containing antibacterial groups such as triclosan (5-Chloro-2-(2,4-dichlorophenoxy)phenol) and chlorhexidine (1,1'-Hexamethylenebis[5-(4-chlorophenyl)biguanide]). This work has examined the impact of selected antibacterial substances immobilized on low-density polyethylene (LDPE) via polyacrylic acid (PAA) grafted on LDPE by low-temperature barrier discharge plasma. This LDPE surface treatment led to inhibition of Escherichia coli and Staphylococcus aureus adhesion; the first causes intestinal disease, peritonitis, mastitis, pneumonia, septicemia, the latter is the reason for wound and urinary tract infections. en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1002731
utb.identifier.rivid RIV/70883521:28110/12:43867350!RIV13-MSM-28110___
utb.identifier.rivid RIV/70883521:28610/12:43867350!RIV13-MSM-28610___
utb.identifier.obdid 43867610
utb.identifier.scopus 2-s2.0-84856202669
utb.identifier.wok 000299535700052
utb.identifier.coden MOLEF
utb.source j-wok
dc.date.accessioned 2012-02-29T13:04:47Z
dc.date.available 2012-02-29T13:04:47Z
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Lehocký, Marián
utb.contributor.internalauthor Bílek, František
utb.fulltext.affiliation Anton Popelka 1, Igor Novák 1,*, Marián Lehocký 2, Ivan Chodák 1, Ján Sedliačik 3, Milada Gajtanska 3, Mariana Sedliačiková 3, Alenka Vesel 4, Ita Junkar 4, Angela Kleinová 1, Milena Špírková 5 and František Bílek 6 1 Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovakia 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01 Zlín, Czech Republic 3 Faculty of Wood Sciences and Technology, Technical University in Zvolen, T.G. Masaryka 2117/24, 960 53 Zvolen, Slovakia 4 Plasma Laboratory, Department of Surface Engineering, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia 5 Institute of Macromolecular Chemistry AS CR, v. v. i, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic 6 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, T.G.M Sq. 275, 762 72 Zlín, Czech Republic * Author to whom correspondence should be addressed: E-Mail: upolnovi@savba.sk; Tel.: +421-903-925-725.
utb.fulltext.dates Received: 16 November 2011 in revised form: 9 January 2012 Accepted: 10 January 2012 Published: 13 January 2012
utb.fulltext.references 1. Zhang, W.; Luo, Y.; Wang, H.; Jiang, J.; Pu, S.; Chu, P.K. Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater. 2008, 4, 2028–2036. 2. Kuzuya, M.; Sawa, T.; Mouri, M.; Kondo, S.I.; Takai, O. Plasma technique for the fabrication of a durable functional surface on organic polymers. Surf. Coatings Technol. 2003, 169-170, 587–591. 3. Zhang, W.; Chu, P.K.; Ji, J.; Zhang, Y.; Fu, R.K.Y.; Yan, Q. Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene. Polymer 2006, 47, 931–936. 4. Costa, F.; Carvalho, I.F.; Montelaro, R.C.; Gomes, P.; Martins, M.C. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2011, 7, 1431–1440. 5. Goddard, J.M.; Hotchkiss, J.H. Tailored functionalization of low-density polyethylene surfaces. J. Appl. Polym. Sci. 2008, 108, 2940–2949. 6. Faucheux, N.; Schweiss, R.; Lutzow, K.; Wemer, C.; Groth, T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 2004, 25, 2721–2730. 7. Michael, K.E.; Vernekar, V.N.; Keselowsky, B.G.; Meredith, J.C.; Latour, R.A.; Garcia, A.J. Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 2003, 19, 8033–8040. 8. Keselowsky, B.G.; Collard, D.M.; Garcia, A.J.J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A 2003, 66, 247–259. 9. Luk, Y.Y.; Kato, M.; Mrksich, M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 2000, 16, 9604–9608. 10. Vesel, A.; Junkar, I.; Cvelbar, U.; Kovac, J.; Mozetic, M. Surface modification of polyester by oxygen and nitrogen-plasma treatment. Surf. Interface Anal. 2008, 40, 1444–1453. 11. Drnovská, H.; Lapčík, L., Jr; Buršíková, V.; Zemek, J.; Barros-Timmons, A.M. Surface properties of polyethylene after low-temperature plasma treatment. Colloid Polym. Sci. 2003, 281, 1025–1033. 12. Novák, I.; Števiar, M.; Chodák, I.; Krupa, I.; Nedelčev, T.; Špírková, M.; Chehimi, M.M.; Mosnáček, J.; Kleinová, A. Study of adhesion and surface properties of low density polyethylene pre-treated by cold discharge plasma. Polym. Adv. Technol. 2007, 18, 97–105. 13. Olifirenko, A.S.; Novak, I.; Rozova, E.Y.; Saprykina, N.N.; Mitilineos, A.G.; Elyashevich, G.K. Hydrophilization of porous polyethylene films by cold plasma of different types. Polym. Sci. 2009, 51, 247–255. 14. Lloyd, G.; Friedman, G.; Jafri, S.; Schultz, G.; Fridman, A.; Harding, K. Gas plasma: Medical uses and developments in wound care. Plasma Process. Polym. 2010, 7, 194–211. 15. Sanchis, R.; Fenollar, O.; García, D.; Sánchez, L.; Balart, R. Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. Int. J. Adh. Adhesives 2008, 28, 445–451. 16. Pappas, D. Status and potential of atmospheric plasma processing of materials. J. Vac. Sci. Technol. A 2011, 29, 020801:1–020801:17. 17. Yang, L.; Chen, J.; Guo, Y.; Zhan, Z. Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma. Appl. Surf. Sci. 2009, 255, 4446–4451. 18. Černák, M.; Černáková, L’.; Hudec, I.; Kováčik, D.; Zahoranová, A. Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur. Phys. J. Appl. Phys. 2009, 47, 22806:1–22806:6. 19. Šimor, M.; Ráheľ, J.; Vojtek, P.; Černák, M.; Brablec, A. Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl. Phys. Lett. 2002, 81, 2716–2718. 20. Černák, M.; Ráheľ, J.; Kováčik, D.; Šimor, M.; Brablec, A.; Slavíček, P. Generation of thin surface plasma layers for atmospheric-pressure surface treatments. Contrib. Plasma Phys. 2004, 44, 492–495. 21. John, P.I. Plasma Sciences and the Creation of Wealth; Tata McGraw-Hill: New Delhi, India, 2005; p. 80. 22. Šíra, M.; Trunec, D. Surface modification of polyethylene and polypropylene in atmospheric pressure glow discharge. J. Phys. D Appl. Phys. 2005, 38, 621–627. 23. Sarghini, S.; Paulussen, S.; Terryn, H. DBD Atmospheric Plasma Deposition of Antibacterial Coatings. In Proceedings of the 11th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XI), Oléron Island, France, 7–12 September 2008. 24. Newton, A.P.N.; Cadena, S.M.S.C.; Rocha, M.E.M.; Carnieri, E.G.S.; de Oliveira, M.B.M. Effect of triclosan (TRN) on energy-linked functions of rat liver mitochondria. Toxicol. Lett. 2005, 160, 49–59. 25. Maia Ribeiro, L.G.M.; Hashizume, L.N.; Maltz, M. The effect of different formulations of chlorhexidine in reducing levels of mutans streptococci in the oral cavity: A systematic review of the literature. J. Dent. 2007, 35, 359–370. 26. Kenawy, E.R.; Worley, S.D.; Broughton, R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 2007, 8, 1359–1384. 27. Desmet, T.; Morent, R.; Geyter, N.D.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2009, 10, 2351–2378. 28. Kenawy, E.R.; Worley, S.D.; Broughton, R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 2007, 8, 1359–1384. 29. Denes, F.S.; Manolache, S. Macromolecular plasma-chemistry: An emerging field of polymer science. Prog. Polym. Sci. 2004, 29, 815–885. 30. Zhao, B.; Brittain, W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710. 31. Bazaka, K.; Jacob, M.V.; Crawford, R.J.; Ivanova, E.P. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011, 7, 2015–2028. 32. Işiklan, N.; Kurşun, F.; İnal, M. Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydr. Polym. 2010, 79, 665–672. 33. Buršíková, V.; Sťahel, P.; Navrátil, Z.; Buršík, J.; Janča, J. Surface Energy Evaluation of Plasma Treated Materials by Contact Angle Measurement; Masaryk University: Brno, Czech Republic, 2004; pp. 7–25. 34. Singh, A.; Silverman, J. Radiation processing of polymers. Radiat. Phys. Chem. 1999, 56, 375. 35. Stuart, B. Infrared Spectroscopy: Fundamentals and Applications; Wiley: New York, NY, USA, 2004.
utb.fulltext.sponsorship Financial supports by the Ministry of Education, Youth, and Sports of the Czech Republic (Grant CZ.1.05/2.1.00/03.0111), the Slovak Academy of Sciences (Grant VEGA 2/0185/10), Technical University in Zvolen (Grant VEGA 1/0517/09 and VEGA 1/0581/12, KEGA 060-005 TUZVO 4/2010, and IPA TUZVO 1/2011), Grant Agency of the Academy of Sciences of the Czech Republic (project No. IAAX08240901), Czech Science Foundation (project 104/09/H080) and the Slovenia Ministry of Higher Education, Science, and Technology (Program P2-0082-2) are gratefully acknowledged.
utb.fulltext.projects CZ.1.05/2.1.00/03.0111
utb.fulltext.projects VEGA 2/0185/10
utb.fulltext.projects VEGA 1/0517/09
utb.fulltext.projects VEGA 1/0581/12
utb.fulltext.projects KEGA 060-005
utb.fulltext.projects TUZVO 4/2010
utb.fulltext.projects TUZVO 1/2011
utb.fulltext.projects IAAX08240901
utb.fulltext.projects 104/09/H080
utb.fulltext.projects P2-0082-2
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Unported Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Unported