Publikace UTB
Repozitář publikační činnosti UTB

Influence of supercritical CO2 and initial melting temperature on crystallization of polypropylene/organoclay nanocomposite

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Influence of supercritical CO2 and initial melting temperature on crystallization of polypropylene/organoclay nanocomposite en
dc.contributor.author Svoboda (FT), Petr
dc.contributor.author Trivedi, Krunal
dc.contributor.author Svobodová, Dagmar
dc.contributor.author Kolomazník, Karel
dc.contributor.author Inoue, Takashi
dc.relation.ispartof Polymer Testing
dc.identifier.issn 0142-9418 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2012
utb.relation.volume 31
utb.relation.issue 3
dc.citation.spage 444
dc.citation.epage 454
dc.type article
dc.language.iso en
dc.publisher Elsevier en
dc.identifier.doi 10.1016/j.polymertesting.2012.01.004
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0142941812000153
dc.subject Crystallization en
dc.subject Nanocomposites en
dc.subject Polypropylene en
dc.subject ScCO2 en
dc.subject Spherulites en
dc.description.abstract Polypropylene (PP)/clay nanocomposite with maleic anhydride modified polypropylene (PP-MA) was prepared using a twin-screw extruder. The effect of supercritical carbon dioxide (scCO2) on mixing was investigated. Isothermal crystallization of the nanocomposites was investigated by differential scanning calorimetry (DSC) and also by optical microscopy as a function of initial melting temperature. Increasing initial melting temperature causes a gradual decrease in bulk crystallization kinetics, with the exception of the 240-260 °C temperature range for the system without CO2. Optical microscopy revealed a large number of small spherulites for the system without CO2 after initial melting at 250 °C. After 28 min initial induction period of crystallization many small spherulites appeared in the vicinity of large spherulites for the system with CO2, indicating the beginning of homogenous nucleation. X-ray diffraction (XRD) and direct observation of the samples after tensile testing revealed better dispersion of nanoclay for the system without CO2. © 2011 Elsevier Ltd. All rights reserved. en
utb.faculty Faculty of Technology
utb.faculty Faculty of Applied Informatics
utb.faculty Faculty of Humanities
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1002766
utb.identifier.rivid RIV/70883521:28110/12:43867821!RIV13-MSM-28110___
utb.identifier.rivid RIV/70883521:28140/12:43867821!RIV13-MSM-28140___
utb.identifier.rivid RIV/70883521:28150/12:43867821!RIV13-MSM-28150___
utb.identifier.rivid RIV/70883521:28610/12:43867821!RIV13-MSM-28610___
utb.identifier.obdid 43867909
utb.identifier.scopus 2-s2.0-84856797293
utb.identifier.wok 000302758100012
utb.identifier.coden POTED
utb.source j-scopus
dc.date.accessioned 2012-03-30T12:13:14Z
dc.date.available 2012-03-30T12:13:14Z
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Svoboda (FT), Petr
utb.contributor.internalauthor Trivedi, Krunal
utb.contributor.internalauthor Svobodová, Dagmar
utb.contributor.internalauthor Kolomazník, Karel
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam