Publikace UTB
Repozitář publikační činnosti UTB

Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour en
dc.contributor.author Kucharczyk, Pavel
dc.contributor.author Hnátková, Eva
dc.contributor.author Dvořák, Zdeněk
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Polymer Degradation and Stability
dc.identifier.issn 0141-3910 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2013
utb.relation.volume 98
utb.relation.issue 1
dc.citation.spage 150
dc.citation.epage 157
dc.type article
dc.language.iso en
dc.publisher Elsevier, Ltd. en
dc.identifier.doi 10.1016/j.polymdegradstab.2012.10.016
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0141391012003990
dc.subject Hydrolytic degradation en
dc.subject Molecular weight en
dc.subject Morphology en
dc.subject Poly(l-lactic acid) en
dc.subject Thermal properties en
dc.description.abstract This work describes differences between the degradation of poly(l-lactic acid) bulky samples in high partial pressure of a water vapour environment versus a buffered liquid medium. Analytical techniques (optical and electron microscopy, size exclusion chromatography, differential scanning calorimetry) were used to evaluate the material's morphology, molecular weight, crystallinity and thermal properties. In particular, the extent of degradation was studied separately in the core and surface of the testing specimens. The results reveal significant differences in the bulk degradation profiles and morphological changes for both environments. Degradation in the liquid medium leads to multiphase core-cortex morphology formation, while the environment with high partial pressure of water vapour provides homogeneous-like bulk degradation of the samples due to significantly different diffusion conditions on the liquid-polymer and water vapour saturated air-polymer interface. © 2012 Elsevier Ltd. All rights reserved. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1003081
utb.identifier.obdid 43869892
utb.identifier.scopus 2-s2.0-84871918372
utb.identifier.wok 000315171000019
utb.identifier.coden PDSTD
utb.source j-scopus
dc.date.accessioned 2013-01-17T00:00:56Z
dc.date.available 2013-01-17T00:00:56Z
utb.contributor.internalauthor Kucharczyk, Pavel
utb.contributor.internalauthor Hnátková, Eva
utb.contributor.internalauthor Dvořák, Zdeněk
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Pavel Kucharczyk a,b , Eva Hnatkova c , ZdenekDvorak a,c , Vladimir Sedlarik a,b,* a Centre of Polymer Systems, Tomas Bata University in Zlin, Nam. T.G. Masaryka 5555, 760 01 Zlin, Czech Republic b Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 76272 Zlín, Czech Republic c Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 76272 Zlín, Czech Republic
utb.fulltext.dates Received 30 July 2012 Received in revised form 3 October 2012 Accepted 18 October 2012 Available online 29 October 2012
utb.fulltext.references [1] Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 2011;49(12):832e64. [2] Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science e an introduction to materials in medicine. 2nd ed. San Diego: Elsevier Academic Press; 2004. [3] Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000;21(23):2335e46. [4] Kricheldorf HR. Syntheses and application of polylactides. Chemosphere 2001; 43(1):49e54. [5] Sedlarik V, Saha N, Sedlarikova J, Saha P. Biodegradation of blown films based on poly(lactic acid) under natural conditions. Macromol Symp 2008;272(1):100e3. [6] Tsuji H, Ishida T. Poly(l-lactide): X. Enhanced surface hydrophilicity and chainscission mechanisms of poly(l-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. J Appl Polym Sci 2003;87(10):1628e33. [7] Kale G, Auras R, Singh SP, Narazan R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test 2007;26(8):1049e61. [8] Zhou ZH, Liu XP, Liu QQ, Liu LH. Morphology, molecular mass changes, and degradation mechanism of poly-L-lactide in phosphate-buffered solution. Polym-Plast Technol Eng 2009;47(2):115e20. [9] Cam D, Hyon SH, Ikada Y. Degradation of high molecular weight poly(llactide) in alkaline medium. Biomaterials 1995;16(11):833e43. [10] Tsuji H, Muramatsu H. Blends of aliphatic polyesters. 5. Nonenzymatic and enzymatic hydrolysis of blends from hydrophobic poly(L-lactide) and hydrophilic poly(vinyl alcohol). Polym Degrad Stab 2001;71(3):403e13. [11] Tsuji H, Miyauchi S. Poly(l-lactide): 6. Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym Degrad Stab 2001;71(3):415e24. [12] Tsuji H, Echizen Y, Nishimura Y. Enzymatic degradation of poly(l-lactic acid): effects of UV irradiation. J Polym Environ 2006;14(3):239e48. [13] Tsuji H, Kidokoro Y, Mochizuki M. Enzymatic degradation of poly(L-lactic acid) fibers: effects of small drawing. J Appl Polym Sci 2007;103(5):2064e207. [14] Tsuji H, Ikada Y. Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution. J Polym Sci: Part A: Polym Chem 1998;36(1):59e66. [15] Tsuji H, Kazumasa N. Poly(L-lactide). IX. Hydrolysis in acid media. J Appl Polym Sci 2002;86(1):186e94. [16] Tsuji H, Tsuruno T. Accelerated hydrolytic degradation of poly(L-lactide)/poly(D-lactide) stereocomplex up to late stage. Polym Degrad Stab 2010; 95(4):477e84. [17] Tsuji H, Mizuno A, Ikada Y. Properties and morphology of poly(L-lactide). III. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. J Appl Polym Sci 2000;77(7):1452e64. [18] Tsuji H, Ikada Y. Properties and morphology of poly(L-lactide). 4. Effects of structural parameters on long-term hydrolysis of poly(L-lactide) in phosphate-buffered solution. Polym Degrad Stab 2000;67(1):179e89. [19] Tsuji H, Nakahara K, Ikarashi K. Poly(L-lactide): 8. High temperature hydrolysis of poly(L-lactide) films with different crystallinities and crystalline thicknesses in phosphate-buffered solution. Macromol Mater Eng 2001;286(7):398e406. [20] Tsuji H, Ikarashi K, Fukuda N. Poly(L-lactide): XII. Formation, growth, and morphology of crystalline residues as extended-chain crystallites through hydrolysis of poly(L-lactide) films in phosphate-buffered solution. Polym Degrad Stab 2004;84(3):512e23. [21] Tsuji H. Hydrolysis of biodegradable aliphatic polyesters. In: Pandalai SG, editor. Recent research developments in polymer science, vol. 4. Trivandrum: Transworld Research Network; 2000. p. 13e37. [22] Faisal M, Saeki T, Tsuji H, Daimon H, Fujie K. Recycling of poly lactic acid into lactic acid with high temperature and high pressure water. WIT Trans Ecol Environ 2006;92(1):225e33. [23] Tsuji H. Autocatalytic hydrolysis of amorphous-made polylactides: effects of Llactide content, tacticity, and enantiomeric polymer blending. Polymer 2002; 43(6):1789e96. [24] Tsuji H, Del Carpio CA. In vitro hydrolysis of blends from enantiomericpoly(lactide)s: 3. Well-homo-crystallized and amorphous blend films. Biomacromolecules 2003;4(1):7e11. [25] Tsuji H. In vitro hydrolysis of blends from enantiomericpoly(lactide)s. 4. Wellhomo-crystallized blend and nonblended films. Biomaterials 2003;24(4):537e47. [26] Tsuji H, Miyauchi S. Poly(L-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(L-lactide) films with different crystallinities and a fixed crystalline thickness. Polymer 2001;42(9):4463e7. [27] Pistner H, Stallforth H, Gutwald R, Muhling J, Reuther J, Michel C. Poly(L-lactide): a long-term degradation study in vivo. Part II: physico-mechanical behaviour of implants. Biomaterials 1994;15(6):439e50. [28] Gopferich A. Polymer bulk erosion. Macromolecules 1997;30(9):2598e604. [29] Nakamura T, Hitomi S, Watanabe S, Shimizu Y, Jamshidi K, Hyon S-H, et al. Bioabsorption of polylactides with different molecular properties. J Biomed Mater Res 1989;23(10):1115e30. [30] Fukuzaki H, Yoshida M, Asano M, Kumakura M. Synthesis of copoly(D, L-lactic acid) with relatively low molecular weight and in vitro degradation. Eur Polym J 1989;25(10):1019e26. [31] Li S, Garreau H, Vert M. Structureeproperty relationship in the case of the degradation of massive poly(a-hydroxy acid) in aqueous media. Part 3. Influence of the morphology of poly(L-lactic acid). J Mater Sci Mater Med 1990;1(4):198e206. [32] Migliaresi C, Fambri L, Cohn D. A study on the in vitro degradation of poly(-lactic acid). J Biomater Sci Polym Ed 1994;5(6):591e606. [33] Pegoretti A, Fambri L, Migliaresi C. In vitro degradation of poly(L-lactic acid) fibers produced by melt spinning. J Appl Polym Sci 1997;64(2):213e23. [34] Ho KLG, Pometto AL, Hinz PN. Effects of temperature and relative humidity on polylactic acid plastics degradation. J Environ Polym Degrad 1999;7(2):83e92. [35] Copinet A, Bertrand C, Coma SGV, Couturier Y. Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 2004;55(5):763e73. [36] Cairncross RA, Becker JG, Ramaswamy S, O’connor R. Moisture sorption, transport, and hydrolytic degradation in polylactide. Appl Biochem Biotechnol 2006;131(1e3):774e85. [37] Majoral C, Coates AL, Diot P, Vecellio L. Development of an in vitro model for aerosol sizing at 37 C and 100% relative humidity. Rev Mal Respir 2006; 23(5):520. [38] Massey BL, Wen XJ, Rohr LR, Tresco PA, Dahlstrom L, Park AH. Resorption rate and biocompatibility characteristics of two polyester ventilation tubes in a guinea pig model. Otolaryngol Head Neck Surg 2004;131(6):921e5. [39] Gray S, Lusk RP. Tympanic membrane e tympanostomy tubes. In: Cummings CW, Frederickson JM, Harker LA, Krause CJ, Schuller DE, editors. Otolaryngologyehead and neck surgery. 2nd ed. St. Louis, MO: Mosby Year Book; 1993. [40] Ott LM, Weatherly RA, Detamore MS. Overview of tracheal tissue engineering: clinical need drives the laboratory approach. Ann Biomed Eng 2011;39(8):2091e113. [41] Farahani TD, Entezami AA, Mobedi H, Abtahi M. Degradation of poly(D, Llactide-co-glycolide) 50:50 implant in aqueous medium. Iran Polym J 2005; 8(14):753e63.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (project ME09072) and Operational Programme Research and Development for Innovations co-funded by the European Regional Development Fund (project CZ.1.05/2.1.00/03.0111). The authors are also grateful to the Internal Grant Agency of Tomas Bata University in Zlin (grant IGA/FT/2012/005) for co-funding.
utb.fulltext.projects MSM ME09072
utb.fulltext.projects CZ.1.05/2.1.00/03.0111
utb.fulltext.projects IGA/FT/2012/005
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam