Kontaktujte nás | Jazyk: čeština English
dc.title | Evolutionary synthesis of complex structures - pseudo neural networks for the task of iris dataset classification | en |
dc.contributor.author | Komínková Oplatková, Zuzana | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | Advances in Intelligent Systems and Computing | |
dc.identifier.issn | 2194-5357 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 9783319005416 | |
dc.date.issued | 2013 | |
utb.relation.volume | 210 | |
dc.citation.spage | 211 | |
dc.citation.epage | 220 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Springer | en |
dc.identifier.doi | 10.1007/978-3-319-00542-3_22 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-319-00542-3_22 | |
dc.description.abstract | This research deals with a novel approach to classification. This paper deals with a synthesis of a complex structure which serves as a classifier. Classical artificial neural networks, where a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights, were an inspiration for this work. The proposed method utilizes Analytic Programming (AP) as the tool of the evolutionary symbolic regression. AP synthesizes a whole structure of the relation between inputs and output. Iris data (a known benchmark for classifiers) was used for testing of the proposed method. For experimentation, Differential Evolution for the main procedure and also for meta-evolution version of analytic programming was used. © Springer International Publishing Switzerland 2013. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1003434 | |
utb.identifier.obdid | 43869947 | |
utb.identifier.scopus | 2-s2.0-84880372474 | |
utb.source | j-scopus | |
dc.date.accessioned | 2013-08-02T09:10:28Z | |
dc.date.available | 2013-08-02T09:10:28Z | |
utb.contributor.internalauthor | Komínková Oplatková, Zuzana | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.affiliation | Zuzana Kominkova Oplatkova and Roman Senkerik Zuzana Kominkova Oplatkova · Roman Senkerik Tomas Bata University in Zlin, Faculty of Applied Informatics, T.G. Masaryka 5555, 760 01 Zlin, Czech Republic e-mail: {senkerik,oplatkova}@fai.utb.cz | |
utb.fulltext.dates | - | |
utb.fulltext.sponsorship | This work was supported by European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089. |