Publikace UTB
Repozitář publikační činnosti UTB

Different source atelocollagen thin films: Preparation, process optimisation and its influence on the interaction with eukaryotic cells

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Different source atelocollagen thin films: Preparation, process optimisation and its influence on the interaction with eukaryotic cells en
dc.contributor.author López García, Jorge Andrés
dc.contributor.author Humpolíček, Petr
dc.contributor.author Lehocký, Marián
dc.contributor.author Junkar, Ita
dc.contributor.author Mozetič, Miran
dc.relation.ispartof Materiali in Tehnologije
dc.identifier.issn 1580-2949 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2013
utb.relation.volume 47
utb.relation.issue 4
dc.citation.spage 473
dc.citation.epage 479
dc.type article
dc.language.iso en
dc.publisher Institut za Kovinske Materiale in Tehnologije Ljubljana sl
dc.relation.uri http://mit.imt.si/Revija/mit134.html
dc.subject Atelocollagen thin films en
dc.subject Eukaryotic cell response en
dc.subject Film optimisation en
dc.subject Film quality en
dc.subject Surface topography en
dc.description.abstract Collagen thin films were prepared via bovine atelocollagen matrices. The film casting was carried out by using different culture dishes, concentrations, equipment, drying processes and periods of time. In order to optimise the repeatability and reproducibility, microscopic analyses were utilised to explore the film quality and topographical patterning. In addition, the human immortalised non-tumorigenic keratinocyte cell line (HaCaT) was seeded onto the obtained specimens, and the cell proliferation was determined by using the MTT assay. These results indicated how the substrate, its concentration and processing conditions influence the cellular response. The attempted technique shows itself to be an excellent procedure for continuous collagen film preparation with optimal cell-proliferation rates, which may potentially be used in tissue engineering or wound-healing applications. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1003443
utb.identifier.obdid 43869926
utb.identifier.scopus 2-s2.0-84881091292
utb.identifier.wok 000323085200013
utb.source j-scopus
dc.date.accessioned 2013-08-21T10:18:13Z
dc.date.available 2013-08-21T10:18:13Z
dc.rights.uri http://mit.imt.si/
dc.rights.access openAccess
utb.contributor.internalauthor López García, Jorge Andrés
utb.contributor.internalauthor Humpolíček, Petr
utb.contributor.internalauthor Lehocký, Marián
utb.fulltext.affiliation Jorge López García1, Petr Humpolíček1, Marián Lehocký1, Ita Junkar2, Miran Mozetič2 1 Centre of Polymer Systems, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic 2 Department of Surface Engineering, Plasma Laboratory, Jo`ef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia lehocky@post.cz
utb.fulltext.dates Prejem rokopisa – received: 2012-11-16; sprejem za objavo – accepted for publication: 2013-01-09
utb.fulltext.references 1 M. D. Shoulders, R. T. Raines, Annu. Rev. Biochem., 78 (2009) 929–958 2 D. J. Prockop, K. I. Kivirikko, Annu. Rev. Biochem., 64 (1995) 403–34 3 H. W. T. Matthew, Polymers for Tissue Engineering Scaffolds, In: S. Dumitriu, editor, Polymeric biomaterials, CRC Press, Boca Raton 2001, 167–180 4 N. C. Avery, T. J. Sims, C. Karkup, A. J. Bailey, Meat Sci., 42 (1996) 355–369 5 R. Berisio, L. Vitagliano, L. Mazzarella, A. Zagari, Protein Sci., 11 (2001), 262–270 6 A. Rich, F. H. C., Nature, 176 (1955), 915–916 7 K. Okuyama, Connect. Tissue Res., 49 (2008), 299–310 8 R. Parenteau-Bareil, R. Gauvin, F. Berthod, Materials, 3 (2010), 1863–1887 9 N. Nambu, S. Kishimoto, S. Nakamura, H. Mizuno, S. Yanagibayashi, N. Yamamoto, R. Azuma, S. Nakamura, T. Kizosawa, M. Ishihara, Y. Kanatani, Accelerated wound healing in healingimpaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix, Ann. Plas. Surg., 62 (2009), 317–321 10 J. L. Garcia, J. Pacherník, M. Lehocký, I. Junkar, P. Humpolíček, P. Sáha, Enhanced keratinocyte cell attachment to atelocollagen thin films through air and nitrogen plasma treatment, Prog. Colloid Polym. Sci., 138 (2011), 89–94 11 I. Banerjee, D. Mishra, T. Das, S. Maiti, T. K. Maiti, Caprine (Goat) collagen: A potential biomaterial for skin tissue engineering, J Biomater. Sci. Polym. Ed., 23 (2012), 355–373 12 A. Vesel, K. Eleršič, M. Mozetič, Immobilization of protein streptavidin to the surface of PMMA polymer, Vacuum, 86 (2012), 773–775 13 H. Fasl, L. F. Zemljic, W. Goessler, K. Stana - Kleinschek, V. Ribitsch, Investigation into amphiphilic chitosan: properties and availability of original and newly introduced functional groups, Macromolecular Chemistry and Physics, 15 (2012), 1582–1589 14 F. Silver, A. Garg, Collagen: Characterization, processing and medical applications, In: A. Domb, J. Kost, D. Wiserman (editors), Handbook of biodegradable polymers, Part of the book series, Drug targeting and delivery, Harwood Academic Publishers, Amsterdam 1997, 319–346 15 S. Inaba, S. Nagahara, N. Makita, Y. Tarumi, T. Ishimoto, S. Matsuo, K. Kadomatsu, Y. Takei, Atelocollagen-mediated systemic delivery prevents immunostimulatory adverse effects of siRNA in mammals, Mol Ther, 20 (2012), 356–366 16 F. Takeshita, Y. Minakuchi, S. Nagahara, K. Honma, H. Sasaki, K. Hirai, T. Teratani, N. Namatame, Y. Yamamoto, K. Hanai, T. Kato, A. Sano, T. Ochiya, I. M. Verma, Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo, Proc. Nat. Acad. Sci. USA, 102 (2005), 12177–12182 17 A. Sano, M. Maeda, S. Nagahara, T. Ochiya, K. Honma, H. Itoh, T. Miyata, K. Fujioka, Atelocollagen for protein and gene delivery, Adv. Drug Delivery Rev., 55 (2003), 1651–1677 18 Y. Tanaka, H. Yamaoka, S. Nishizawa, S. Nagata, T. Ogasawara, Y. Asawa, Y. Fujihara, T. Takato, K. Hoshi, The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage, Biomaterials, 31 (2010), 4506–4516 19 H. Yamaoka, Y. Tanaka, S. Nishizawa, Y. Asawa, T. Takato, K. Hoshi, The application of atelocollagen gel in combination with porous scaffolds for cartilage tissue engineering and its suitable conditions, J Biomed. Mater. Res., Part A, 93 (2010), 123–132 20 A. Bernal, R. Balková, I. Kuřitka, P. Sáha, Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen, Polym Bull., 70 (2013) 2, 431–453 21 J. Einbinder, M. Schubert, Binding of mucopolysaccharides and dyes by collagen, J. Biol. Chem., 188 (1951), 335–341 22 H. Sage, R. G. Woodbury, P. Bornstein, Structural studies on human type IV collagen, J. Biol. Chem., 254 (1979), 9893–9900 23 O. Harada, K. Kadota, T. Yamamoto, Collagen-based new biomedical films: Synthesis, property and cell adhesion, J. Appl. Polym. Sci., 81 (2000), 2433–2438 24 F. Vojdani, Solubility, In: G. M. Hall (editor), Methods of testing protein functionality, Champan and Hall, London 1996, 11–60 25 H. Tabarestani, Y. Maghsoudlou, A. Motamedzadegan, A. R. Sadeghi, H. Rostamzad, Study on some properties of acid-soluble collagens isolated from fish skin and bones of rainbow trout (Onchorhynchus mykiss), Int. Food Res. J., 19 (2012), 251–257 26 Y. Nomura, S. Toki, Y. Ishii, K. Shirai, The physicochemical property of shark type I collagen gel and membrane, J. Agric. Food Chem., 48 (2000), 2028–2032 27 A. A. S. Machado, V. C. A. Martins, A. M. G. Plepis, Thermal and rheological behavior of collagen chitosan blends, J. Thermal Anal. Cal., 67 (2002), 491–498 28 Z. Zhang, G. Li, B. Shi, Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes, J. Soc. Leath. Technol. Chem., 90 (2005), 23–28 29 G. Lai, Y. Li, G. Li, Effect of concentration and temperature on the rheological behavior of collagen solution, Int. J. Biol. Macromol., 42 (2008), 285–2891 30 P. Müller-Buschbaum, J. S. Gutmann, M. Wolkenhauer, J. Kraus, M. Stamm, D. Smilgies, W. Petry, Solvent-Induced Surface Morphology of Thin Polymer Films, Macromolecules, 34 (2001), 1369–1375 31 T. To, H. Wang, A. B. Djuri{ic, M. H. Xiea, W. K. Chan, M. H. Xie, W. K. Chan, Z. Xie, C. Wud, S. Y. Tonge, Solvent dependence of the evolution of the surface morphology of thin asymmetric diblock copolymer films, Thin Solid Films, 467 (2004), 59–65 32 P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line, J. Cell Biol., 106 (1998), 761–771 33 R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, P. F. Nealey, Effects if synthetic micro- and nano-structured surfaces on cell behavior, Biomaterials, 20 (1999), 573–588 34 J. L. Garcia, A. Asadinezhad, J. Pacherník, M. Lehocký, I. Junkar, P. Humpolíček, P. Sáha, P. Valá{ek, Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment, Molecules, 15 (2010), 2845–2856 35 N. Roy, N. Saha, T. Kitano, M. Lehocký, E. Vitková, P. Sáha, Significant characteristics of medical-grade polymer sheets and their efficiency in protecting hydrogel wound dressings: A soft polymeric biomaterial, Int. J. Polym. Mater., 61 (2012), 72–88 36 S. L. Ishaug-Riley, L. E. Okun, G. Prado, M. A. Applegate, A. Ratcliffe, Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films, Biomaterials, 20 (1999), 2245–2256 37 M. Lehocký, P. Sťahel, M. Koutný, J. Čech, J. Institoris, A. Mráček, Adhesion of Rhodococcus sp S3E2 and Rhodococcus sp S3E3 to plasma prepared teflon-like and organosilicon surfaces, J. Mater. Process. Technol., 209 (2009), 2871–2875
utb.fulltext.sponsorship The authors would like to express their gratitude to the Ministry of Education, Youth and Sport of the Czech Republic (CZ.1.05/2.1.00/03.0111). The Slovenia Ministry of Higher Education, Science, and Technology (Program P2-0082-2) and Ad Futura L7-4009 are also gratefully acknowledged for the financial support of this research.
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam