Publikace UTB
Repozitář publikační činnosti UTB

Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks en
dc.contributor.author Hausnerová, Berenika
dc.contributor.author Kuřitka, Ivo
dc.contributor.author Bleyan, Davit
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2014
utb.relation.volume 19
utb.relation.issue 3
dc.citation.spage 2748
dc.citation.epage 2760
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/molecules19032748
dc.relation.uri http://www.mdpi.com/1420-3049/19/3/2748
dc.subject Binder en
dc.subject Carnauba wax en
dc.subject Debinding en
dc.subject Polyolefin en
dc.subject Powder injection moulding en
dc.subject Thermogravimetric analysis en
dc.description.abstract This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.©2014 by the authors; licensee MDPI, Basel, Switzerland. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1003713
utb.identifier.obdid 43871775
utb.identifier.scopus 2-s2.0-84896975003
utb.identifier.wok 000335826800002
utb.identifier.coden MOLEF
utb.source j-scopus
dc.date.accessioned 2014-05-07T13:49:21Z
dc.date.available 2014-05-07T13:49:21Z
dc.description.sponsorship Operational Program Research and Development for Innovations; ERDF; national budget of Czech Republic [CZ.1.05/2.1.00/03.0111]; European Social Fund (ESF); Tomas Bata University [IGA/FT/2014/]; Visegrad Fund
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Hausnerová, Berenika
utb.contributor.internalauthor Kuřitka, Ivo
utb.contributor.internalauthor Bleyan, Davit
utb.fulltext.affiliation Berenika Hausnerova 1,2,*, Ivo Kuritka 2,3 and Davit Bleyan 1,2 1 Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, Zlin 760 01, Czech Republic; E-Mail: bleyan@ft.utb.cz 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, Zlin 760 01, Czech Republic; E-Mail: kuritka@ft.utb.cz 3 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, Zlin 760 01, Czech Republic * Author to whom correspondence should be addressed; E-Mail: hausnerova@ft.utb.cz; Tel.: +420-576-035-167; Fax: +420-576-031-444.
utb.fulltext.dates Received: 3 January 2014; in revised form: 20 February 2014 / Accepted: 21 February 2014 / Published: 27 February 2014
utb.fulltext.references 1. Onbattuvelli, V.P.; Vallury, S.; McCabe, T.; Park, S.J.; Atre, S.V. Properties of SiC and AlN feedstocks for the powder injection moulding of thermal management devices. PIM Int. 2010, 4, 64–70. 2. Chung, C.; Rhee, B.; Cao, M.; Liu, C. Requirements of binder for powder injection molding. In Advances in Powder Metallurgy; In Proceedings of Powder Metallurgy Conference and Exhibition, San Diego, USA, 11–14 June 1989; Gasbarre, T.G., Jandesca, W.F., Eds.; Metal Powder Industries Federation: Princeton, NJ, USA, 1989; pp. 67–78. 3. Tseng, W.J.; Hsu, C.K. Cracking defect and porosity evolution during thermal debinding in ceramic injection moldings. Ceram. Int. 1999, 25, 461–466. 4. Zhang, J.; Edirisinghe, M.; Evans, J. A catalogue of ceramic injection moulding defects and their causes. Ind. Ceram. 1989, 9, 72–82. 5. Hausnerova, B.; Vltavska, P.; Sedlacek, T. Pressure-Affected Flow Properties of Powder Injection Moulding Compounds. Powder Technol. 2009, 194, 192–196. 6. Onbattuvelli, V.P.; Enneti, R.K.; Park, S.; Atre, S.V. The effects of nanoparticle addition on binder removal from injection molded aluminum nitride. Int. J. Refract. Metals Hard Mater. 2013, 36, 77–84. 7. Hausnerova, B.; Marcanikova, L.; Filip, P.; Saha, P. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder. Polym. Eng. Sci. 2011, 51, 1376–1382. 8. Trunec, M.; Cihlar, J. Thermal removal of multicomponent binder from ceramic injection mouldings. J. Eur. Ceram. Soc. 2002, 22, 2231–2241. 9. Krauss, V.A.; Oliveira, A.A.M.; Klein, A.N.; Al-Qureshi, H.A.; Fredel, M.C. A model for PEG removal from alumina injection moulded parts by solvent debinding. J. Mater. Process. Technol. 2007, 182, 268–273. 10. Voorhees, K.J.; Baugh, S.F.; Stevenson, D.N. The thermal degradation of poly(ethylene glycol)/poly(vinyl alcohol) binder in alumina ceramics. Thermochim. Acta 1996, 274, 187–207. 11. Huang, M.S.; Hsu, H.C. Effect of backbone polymer on properties of 316L stainless steel MIM compact. J. Mater. Process. Technol. 2009, 209, 5527–5535. 12. Hsu, K.C.; Lin, C.C.; Lo, G.M. Effect of wax composition on injection moulding of 304L stainless steel powder. Powder Metall.1994, 37, 272–276. 13. Yang, W.W.; Hon, M.H. In situ evaluation of dimensional variations during water extraction from alumina injection-moulded parts. J. Eur. Ceram. Soc. 2000, 20, 851–858. 14. Yang, W.W.; Yang, K.Y.; Hon, M.H. Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater. Chem. Phys. 2003, 78, 416–424. 15. Ren, S.B.; He, X.B.; Qu, X.H.; Humail, I.S.; Li, Y. Effects of binder compositions on characteristics of feedstocks of microsizedSiC ceramic injection moulding. Powder Metall. 2007, 50, 255–259. 16. Persson, H.; Hausnerova, B.; Nyborg, L.; Rigdahl, M. Rheological and thermal properties of a model system for PIM. Int. Polym. Proc. 2009, 24, 206–212. 17. Knapp, A.M.; Halloran, J.W. Binder removal from ceramic-filled thermoplastic blends. J. Am. Ceram. Soc. 2006, 89, 2776–2781. 18. Chartier, T.; Delhomme, E.; Baumard, J.F. Mechanisms of binder removal involved in supercritical debinding of injection moulded ceramics. J. Phys. III 1997, 7, 291–302. 19. Maximenko, A.; Biest, O. Finite element modelling of binder removal from ceramic mouldings. J. Eur. Ceram. Soc. 1998, 18, 1001–1009. 20. Seeger, M.; Gritter, R.J. Thermal decomposition and volatilization of poly(α-olefins). J. Polym. Sci.: Polym. Chem. 1977, 15, 1393–1402. 21. Wright, J.K.; Evans, J.R.G. Kinetics of the oxidative degradation of ceramic injection-moulding vehicle. J. Mater. Sci. 1991, 26, 4897–4904. 22. Craig, R.G.; Eick, J.D.; Peyton, F.A. Properties of natural waxes used in dentistry. J. Dent. Res. 1965, 44, 1308–1316. 23. Han, S.; Kim, C.; Kwon, D. Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer 1997, 38, 317–323.
utb.fulltext.sponsorship This article was written with the support of Operational Program Research and Development for Innovations co-funded by the ERDF and national budget of Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111) and of Operational Program Education for Competitiveness co-funded by the European Social Fund (ESF) and national budget of Czech Republic, within the framework of project Advanced Theoretical and Experimental Studies of Polymer Systems (reg. number: CZ.1.07/2.3.00/20.0104). The author D.B. would like to acknowledge the support of the internal grant of Tomas Bata University in Zlin No. IGA/FT/2014/ and support of Visegrad Fund.
utb.fulltext.projects CZ.1.05/2.1.00/03.0111
utb.fulltext.projects CZ.1.07/2.3.00/20.0104
utb.fulltext.projects IGA/FT/2014/
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Unported Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Unported