Publikace UTB
Repozitář publikační činnosti UTB

Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition en
dc.contributor.author Mikeš, Josef
dc.contributor.author Chudá, Hana
dc.contributor.author Hinterleitner, Irena
dc.relation.ispartof International Journal of Geometric Methods in Modern Physics
dc.identifier.issn 0219-8878 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2014
utb.relation.volume 11
utb.relation.issue 5
dc.type article
dc.language.iso en
dc.publisher World Scientific Publishing Co. Pte Ltd
dc.identifier.doi 10.1142/S0219887814500443
dc.relation.uri http://www.worldscientific.com/doi/abs/10.1142/S0219887814500443?journalCode=ijgmmp
dc.subject Almost Hermitian manifold en
dc.subject Conformal holomorphically projective mapping en
dc.subject Conformal mapping en
dc.subject Holomorphically projective mapping en
dc.subject Initial condition en
dc.description.abstract In this paper, we study holomorphically projective and conformal holomorphically projective mappings between almost Hermitian manifolds H n = (M, g, F) and H̄n = (M̄, ḡ, F̄), i.e. diffeomorphism f : M → M̄ satisfying f = f1 ○ f2 ○ f3, where f1, f3 are conformal mappings and f2 is a holomorphically projective mapping between almost Hermitian manifolds. We obtain fundamental equations of Cauchy type for holomorphically projective mappings between almost Hermitian manifolds and for above-mentioned mappings a new result for the initial condition f*ḡ = k ·g. © World Scientific Publishing Company. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1003774
utb.identifier.obdid 43872000
utb.identifier.scopus 2-s2.0-84901352080
utb.identifier.wok 000336527100005
utb.source j-scopus
dc.date.accessioned 2014-07-07T13:43:51Z
dc.date.available 2014-07-07T13:43:51Z
dc.description.sponsorship P201/11/0356, GACR, Czech Science Foundation
dc.description.sponsorship Czech Science Foundation [P201/11/0356]; Brno University of Technology [FAST-S-12-25/1660]; [CZ.1.07/2.3.00/30.0035]
utb.contributor.internalauthor Chudá, Hana
utb.fulltext.affiliation Josef Mikeš Department of Algebra and Geometry, Palacky University Olomouc 771 46, Czech Republic josef.mikes@upol.cz Hana Chudá Department of Mathematics, Tomas Bata University in Zlín Zlín 760 01, Czech Republic chuda@fai.utb.cz Irena Hinterleitner Department of Mathematic, Brno University of Techology Brno 616 69, Czech Republic hinterleitner.irena@seznam.cz
utb.fulltext.dates Received 15 November 2013 Accepted 7 February 2014 Published 11 March 2014
utb.fulltext.sponsorship The paper was supported by Grant P201/11/0356 of the Czech Science Foundation, FAST-S-12-25/1660 of the Brno University of Technology, and by the project CZ.1.07/2.3.00/30.0035.
utb.fulltext.projects GACR P201/11/0356
utb.fulltext.projects FAST-S-12-25/1660
utb.fulltext.projects CZ.1.07/2.3.00/30.0035
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam