Publikace UTB
Repozitář publikační činnosti UTB

Iris data classification by means of pseudo neural networks based on evolutionary symbolic regression

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Iris data classification by means of pseudo neural networks based on evolutionary symbolic regression en
dc.contributor.author Komínková Oplatková, Zuzana
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof Proceedings 27th European Conference on Modelling and Simulation ECMS 2013
dc.identifier.isbn 978-0-9564944-6-7
dc.date.issued 2013
dc.citation.spage 355
dc.citation.epage 360
dc.event.title 27th European Conference on Modelling and Simulation, ECMS 2013
dc.event.location Alesund
utb.event.state-en Norway
utb.event.state-cs Norsko
dc.event.sdate 2013-05-27
dc.event.edate 2013-05-30
dc.type conferenceObject
dc.language.iso en
dc.publisher European Council for Modelling and Simulation (ECMS)
dc.identifier.doi 10.7148/2013-0355
dc.relation.uri http://www.scs-europe.net/dlib/2013/2013-0355.htm
dc.relation.uri http://www.scs-europe.net/dlib/2013/ecms13papers/is_ECMS2013_0184.pdf
dc.subject Iris data en
dc.subject Pseudo Neural Network en
dc.subject Analytic programming en
dc.subject Differential Evolution en
dc.description.abstract This research deals with a novel approach to classification. Iris data was used for the experiments. Classical artificial neural networks, where a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights, was an inspiration for this work. Artificial neural networks need to optimize weights, but the structure and transfer functions are usually set up before the training. The proposed method utilizes the symbolic regression for synthesis of a whole structure, i.e. the relation between inputs and output(s) and tested on iris data in this case. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1003822
utb.identifier.obdid 43870872
utb.identifier.scopus 2-s2.0-84900335135
utb.identifier.wok 000337114500054
utb.source d-wok
dc.date.accessioned 2014-08-05T09:56:31Z
dc.date.available 2014-08-05T09:56:31Z
utb.contributor.internalauthor Komínková Oplatková, Zuzana
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.affiliation Zuzana Kominkova Oplatkova, Roman Senkerik Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic {oplatkova, senkerik}@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.sponsorship This work was supported by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam