Publikace UTB
Repozitář publikační činnosti UTB

Heat production and distribution control system based on holonic concept

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Heat production and distribution control system based on holonic concept en
dc.contributor.author Vašek, Lubomír
dc.contributor.author Dolinay, Viliam
dc.contributor.author Sysala, Tomáš
dc.relation.ispartof WSEAS Transactions on Heat and Mass Transfer
dc.identifier.issn 1790-5044 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2014
utb.relation.volume 9
utb.relation.issue 1
dc.citation.spage 226
dc.citation.epage 233
dc.type article
dc.language.iso en
dc.publisher World Scientific and Engineering Academy and Society (WSEAS)
dc.relation.uri http://www.wseas.org/multimedia/journals/heat/2014/a085712-167.pdf
dc.subject district heating en
dc.subject distributed control systems en
dc.subject heat distribution and consumption en
dc.subject holarchy en
dc.subject holon en
dc.subject Smart Thermal grid en
dc.description.abstract This article shows the idea of the application of holonic concept for distributed control systems in district heating systems. Application of the holonic concepts appear to be appropriate for requirements of modern heating networks, referred as smart heat grids, which require quality control and communication infrastructure. District heating network can be divided into the autonomous elements and consequently it is possible to define tasks and relationships between them. To build and successfully manage such systems bring many benefits in comparison with centralized approaches. The first task of this research is to analyze the behavior of each heating network element in detail and define hierarchies and mutual bindings. The preparation of this holonic application has already been started for the key elements of the distribution network. The analysis focuses on physical properties and operational data of individual heat exchanger stations and their binding on other system elements. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1003942
utb.identifier.obdid 43872214
utb.identifier.scopus 2-s2.0-84912530161
utb.source j-scopus
dc.date.accessioned 2015-01-13T09:25:48Z
dc.date.available 2015-01-13T09:25:48Z
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Vašek, Lubomír
utb.contributor.internalauthor Dolinay, Viliam
utb.contributor.internalauthor Sysala, Tomáš
utb.fulltext.affiliation VASEK LUBOMIR, DOLINAY VILIAM, SYSALA TOMAS Faculty of Applied Informatics Tomas Bata University in Zlin Nad Stranemi 4511, Zlin CZECH REPUBLIC vdolinay@fai.utb.cz http://fai.utb.cz
utb.fulltext.dates -
utb.fulltext.references [1] Navratil P., Klapka, J., Balate J., Konecny, P. (2012). “Optimization of load of heat source described by nonlinear mathematical model,” In: Proceedings of the 18th International Conference on Soft Computing MENDEL 2012. Editor: Matousek, R., Published by Brno University of Technology, Brno, CR, p. 356-362. [June 27-29]. [2] Johansson, C. (2012). Smart Heat Grids, Sustainable district heating and cooling for the future [Online]. Available: http:// innoheat.eu/wp-content/uploads/2012/04/Guest-WriterNODA.pdf. [3] Koestler A. The Ghost in the Machine, Penguin Books (reprint 1990), ISBN-13: 978-0140191929 [4] Sadik Kakaç and Hongtan Liu. Heat Exchangers: Selection, Rating and Thermal Design (2nd ed.). CRC Press, 2002. [5] Heat exchanger [Online]. Available: http://scopewe.com/double-pipe-heatexchanger-design-part-2 [6] Alfa Laval [Online], Available: http://local.alfalaval.com/cscz/produkty/prenos-tepla/teorie-prenosutepla/pages/teorie-prenosu-tepla.aspx. [7] Heat exchanges in district heating systems [Online]. Available: http://www.tzbinfo.cz/5236-predavaci-stanice-tepla-vsoustavach-czt-iii [8] Kwangyeol, R. 2004, “Fractal-based Reference Model for Self-reconfigurable Manufacturing Systems”. Ph.D. dissertation, University of Science and Technology. Pohang, Korea, 2004. [9] DBDH, District heating technology, Available: http://www.dbdh.dk/ [10] AnsversTM [Online]. Available: http://www.answers.com/topic/log-meantemperature-difference [11] Dreher & Associates, Inc. [Online]. Available: http://www.dreherassociates.com/mueller/ [12] Chramcov, B. “Utilization of Mathematica Environment for Designing the Forecast Model of Heat Demand”, In: WSEAS Transaction on Heat and Mass Transfer, Volume 6, 2011, p. 21-30, ISSN: 1790-5044. [13] Varacha, P. “Impact of Weather Inputs on Heating Plant - Aglomeration Modeling”, In: Recent Advances in Neural Networks: Proceedings of the 10th WSEAS International Conference on Neural Networks, Prague: WSEAS Press, 2009. s. 193. ISBN 978-960- 474-065-9, ISSN 1790-5109 [14] Vasek L., Dolinay V. (2011). Simulation Model of Heat Distribution and Consumption in Practical Use. Proceedings of the 13th WSEAS International Conference on Automatic Control, Modeling and Simulation, Lanzarote, WSEAS Press 2011, pp. 321-324, ISBN 978-1-61804-004-6. [15] UE United Energy, Available: http://www.ue.cz [16] Smart Cities [Online], Available: http://eusmartcities.eu/
utb.fulltext.sponsorship The work was supported by the European Regional Development Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International