Kontaktujte nás | Jazyk: čeština English
Název: | A tertiary amine in two competitive processes: Reduction of graphene oxide vs. catalysis of atom transfer radical polymerization | ||||||||||
Autor: | Ilčíková, Markéta; Mrlík, Miroslav; Špitálský, Zdenko; Mičušík, Matej; Csomorová, Katarína; Sasinková, Vlasta; Kleinová, Angela; Mosnáček, Jaroslav | ||||||||||
Typ dokumentu: | Recenzovaný odborný článek (English) | ||||||||||
Zdrojový dok.: | RSC Advances. 2015, vol. 5, issue 5, p. 3370-3376 | ||||||||||
ISSN: | 2046-2069 (Sherpa/RoMEO, JCR) | ||||||||||
Journal Impact
This chart shows the development of journal-level impact metrics in time
|
|||||||||||
DOI: | https://doi.org/10.1039/c4ra12915f | ||||||||||
Abstrakt: | Electrically conductive graphene oxide-polystyrene hybrids (GO-PS) were prepared by reduction of graphene oxide (GO) in one step during covalent modification of graphene oxide surface using surface-initiated atom transfer radical polymerization (SI-ATRP) of styrene. The reduction of the GO surface was proven by Raman spectroscopy, electrical conductivity measurements, thermogravimetric analysis and X-ray photoelectron spectroscopy. Electrical conductivity of the synthesized GO-PS particles increased in eight orders of magnitude, depending on the polymerization period. Detailed studies were performed to determine that the tertiary amine, such as N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA), used in SI-ATRP as a ligand complexing copper catalyst, was responsible for the GO surface reduction. It was shown that due to participation of PMDETA in reduction of graphene oxide, the ATRP in the presence of GO can proceed only above a certain PMDETA-GO ratio. | ||||||||||
Plný text: | http://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra12915f/unauth#!divAbstract | ||||||||||
Zobrazit celý záznam |