Publikace UTB
Repozitář publikační činnosti UTB

MnO2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance supercapacitor electrodes

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title MnO2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance supercapacitor electrodes en
dc.contributor.author Li, Huailong
dc.contributor.author Jiang, Lixue
dc.contributor.author Cheng, Qilin
dc.contributor.author He, Ying
dc.contributor.author Pavlínek, Vladimír
dc.contributor.author Sáha, Petr
dc.contributor.author Li, Chunzhong
dc.relation.ispartof Electrochimica Acta
dc.identifier.issn 0013-4686 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2015
utb.relation.volume 164
dc.citation.spage 252
dc.citation.epage 259
dc.type article
dc.language.iso en
dc.publisher Elsevier, Ltd.
dc.identifier.doi 10.1016/j.electacta.2015.02.218
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S001346861500540X
dc.subject Electrochemical properties en
dc.subject Hierarchical porous carbon en
dc.subject MnO2 nanoflakes en
dc.subject Nanocomposite en
dc.subject Supercapacitor en
dc.description.abstract A facile strategy is developed for the synthesis of MnO2 nanoflakes/hierarchical porous carbon spheres (HPCs) nanocomposites via a two-step redox process. The external MnO2 nanoflakes with thickness of ∼10 nm deposited on the surface of the HPCs result in the formation of hierarchical architecture of the composites, while the internal MnO2 layer stabilizes the interaction between MnO2 nanoflakes and HPCs. The resultant composites still retain porous structure after removal of mesoporous SiO2 template and exhibit relatively high specific surface area. The morphology control of the composites can be easily achieved by varying the initial content of Mn(NO3)2 and KMnO4. Electrochemical performance of the composites as supercapacitor electrode materials was evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. The MnO2 nanoflakes/HPCs composite with 75 wt% MnO2 possesses the highest specific capacitance at a high scan rate or current density (417.2 F g-1 at 20 mV s-1 and 326.9 F g-1 at 1 A g-1, respectively) and extraordinary cycling stability (slightly over 100% capacitance retention after 10000 cycles at a scan rate of 100 mV s-1), which are superior to other reported MnO2/carbon composites. The results suggest that rational design and synthesis of MnO2/porous carbon composite electrode materials with maximum electrochemical active sites is important to further improve their electrochemical performance. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1004186
utb.identifier.rivid RIV/70883521:28610/15:43873051!RIV16-MSM-28610___
utb.identifier.obdid 43873471
utb.identifier.scopus 2-s2.0-84924047400
utb.identifier.wok 000352499000031
utb.identifier.coden ELCAA
utb.source j-scopus
dc.date.accessioned 2015-05-06T06:58:16Z
dc.date.available 2015-05-06T06:58:16Z
dc.description.sponsorship 20925621, NSFC, National Natural Science Foundation of China; 21236003, NSFC, National Natural Science Foundation of China; 21322607, NSFC, National Natural Science Foundation of China; 21371057, NSFC, National Natural Science Foundation of China
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Cheng, Qilin
utb.contributor.internalauthor He, Ying
utb.contributor.internalauthor Pavlínek, Vladimír
utb.contributor.internalauthor Sáha, Petr
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam