Kontaktujte nás | Jazyk: čeština English
dc.title | MIMO pseudo neural networks for iris data classification | en |
dc.contributor.author | Komínková Oplatková, Zuzana | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | Modern Trends and Techniques in Computer Science (CSOC 2014) | |
dc.relation.ispartof | Advances in Intelligent Systems and Computing | |
dc.identifier.issn | 2194-5357 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-331906739-1 | |
dc.date.issued | 2014 | |
utb.relation.volume | 285 | |
dc.citation.spage | 165 | |
dc.citation.epage | 176 | |
dc.event.title | 3rd Computer Science On-line Conference, CSOC 2014 | |
dc.event.sdate | 2014-04-28 | |
dc.event.edate | 2014-04-30 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer-Verlag | |
dc.identifier.doi | 10.1007/978-3-319-06740-7_15 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-319-06740-7_15 | |
dc.subject | Classification | en |
dc.subject | Pseudo neural networks | en |
dc.subject | Symbolic regression | en |
dc.description.abstract | This research deals with a novel approach to classification. This paper deals with a synthesis of a complex structure which serves as a classifier. Compared to previous research, this paper synthesizes multi-input–multi-output (MIMO) classifiers. Classical artificial neural networks (ANN) were an inspiration for this work. The proposed technique creates a relation between inputs and outputs as a whole structure together with numerical values which could be observed as weights in ANN. The Analytic Programming (AP) was utilized as the tool of synthesis by means of the evolutionary symbolic regression. Iris data (a known benchmark for classifiers) was used for testing of the proposed method. For experimentation, Differential Evolution for the main procedure and also for metaevolution version of analytic programming was used. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1004200 | |
utb.identifier.obdid | 43871859 | |
utb.identifier.scopus | 2-s2.0-84923811247 | |
utb.identifier.wok | 000370620000015 | |
utb.source | d-scopus | |
dc.date.accessioned | 2015-05-06T06:58:24Z | |
dc.date.available | 2015-05-06T06:58:24Z | |
utb.contributor.internalauthor | Komínková Oplatková, Zuzana | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.affiliation | Zuzana Kominkova Oplatkova and Roman Senkerik Z. K. Oplatkova (&) R. Senkerik Faculty of Applied Informatics, Tomas Bata University in Zlin, Nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic e-mail: oplatkova@fai.utb.cz R. Senkerik e-mail: senkerik@fai.utb.cz | |
utb.fulltext.dates | - | |
utb.fulltext.sponsorship | This work was supported by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089. |