Publikace UTB
Repozitář publikační činnosti UTB

Complex network analysis of evolutionary algorithms applied to combinatorial optimisation problem

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Complex network analysis of evolutionary algorithms applied to combinatorial optimisation problem en
dc.contributor.author Davendra, Donald David
dc.contributor.author Zelinka, Ivan
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Pluháček, Michal
dc.relation.ispartof Advances in Intelligent Systems and Computing
dc.identifier.issn 2194-5357 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-319-08155-7
dc.date.issued 2014
utb.relation.volume 303
dc.citation.spage 141
dc.citation.epage 150
dc.event.title 5th International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2014
dc.event.location Ostrava
utb.event.state-en Czech Republic
utb.event.state-cs Česká republika
dc.event.sdate 2014-06-23
dc.event.edate 2014-06-25
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Verlag
dc.identifier.doi 10.1007/978-3-319-08156-4_15
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-319-08156-4_15
dc.subject complex network en
dc.subject Evolutionary algorithm en
dc.subject flow shop scheduling en
dc.description.abstract This research analyses the development of a complex network in an evolutionary algorithm (EA). The main aim is to evaluate if a complex network is generated in an EA, and how the population can be evaluated when the objective is to optimise an NP-hard combinatorial optimisation problem. The population is evaluated as a complex network over a number of generations, and different attributes such as adjacency graph, minimal cut, degree centrality, closeness centrality, betweenness centrality, k-Clique, k-Club, k-Clan and community graph plots are analysed. From the results, it can be concluded that an EA population does behave like a complex network, and therefore can be analysed as such, in order to obtain information about population development. © Springer International Publishing Switzerland 2014. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1004631
utb.identifier.obdid 43873117
utb.identifier.scopus 2-s2.0-84906657184
utb.identifier.wok 000342841800015
utb.source d-scopus
dc.date.accessioned 2015-06-04T12:54:35Z
dc.date.available 2015-06-04T12:54:35Z
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Pluháček, Michal
utb.fulltext.affiliation Donald Davendra 1 , Ivan Zelinka 1 , Roman Senkerik 2 , and Michal Pluhacek 2 1 VŠB - Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic {donald.davendra,ivan.zelinka}@vsb.cz 2 Tomas Bata University in Zlin, Faculty of Applied Informatics, T.G. Masaryka 5555, 760 01 Zlin, Czech Republic {senkerik,pluhacek}@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.sponsorship This work was principally supported by the Grant of SGS SP2014/170, by the Bio-Inspired Methods: research, development and knowledge transfer project, reg. no. CZ.1.07/2.3.00/20.0073 funded by Operational Programme Education for Competitiveness, co-financed by ESF and state budget of the Czech Republic, IGA project No. IGA/FAI/2014/010, CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, GACR No. P103/13/08195S, SGS No. SP2014/159 and project CZ.1.07/2.3.00/20.0072.
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam