Kontaktujte nás | Jazyk: čeština English
dc.title | Complex network analysis of evolutionary algorithms applied to combinatorial optimisation problem | en |
dc.contributor.author | Davendra, Donald David | |
dc.contributor.author | Zelinka, Ivan | |
dc.contributor.author | Šenkeřík, Roman | |
dc.contributor.author | Pluháček, Michal | |
dc.relation.ispartof | Advances in Intelligent Systems and Computing | |
dc.identifier.issn | 2194-5357 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-3-319-08155-7 | |
dc.date.issued | 2014 | |
utb.relation.volume | 303 | |
dc.citation.spage | 141 | |
dc.citation.epage | 150 | |
dc.event.title | 5th International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2014 | |
dc.event.location | Ostrava | |
utb.event.state-en | Czech Republic | |
utb.event.state-cs | Česká republika | |
dc.event.sdate | 2014-06-23 | |
dc.event.edate | 2014-06-25 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.identifier.doi | 10.1007/978-3-319-08156-4_15 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-319-08156-4_15 | |
dc.subject | complex network | en |
dc.subject | Evolutionary algorithm | en |
dc.subject | flow shop scheduling | en |
dc.description.abstract | This research analyses the development of a complex network in an evolutionary algorithm (EA). The main aim is to evaluate if a complex network is generated in an EA, and how the population can be evaluated when the objective is to optimise an NP-hard combinatorial optimisation problem. The population is evaluated as a complex network over a number of generations, and different attributes such as adjacency graph, minimal cut, degree centrality, closeness centrality, betweenness centrality, k-Clique, k-Club, k-Clan and community graph plots are analysed. From the results, it can be concluded that an EA population does behave like a complex network, and therefore can be analysed as such, in order to obtain information about population development. © Springer International Publishing Switzerland 2014. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1004631 | |
utb.identifier.obdid | 43873117 | |
utb.identifier.scopus | 2-s2.0-84906657184 | |
utb.identifier.wok | 000342841800015 | |
utb.source | d-scopus | |
dc.date.accessioned | 2015-06-04T12:54:35Z | |
dc.date.available | 2015-06-04T12:54:35Z | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.contributor.internalauthor | Pluháček, Michal | |
utb.fulltext.affiliation | Donald Davendra 1 , Ivan Zelinka 1 , Roman Senkerik 2 , and Michal Pluhacek 2 1 VŠB - Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic {donald.davendra,ivan.zelinka}@vsb.cz 2 Tomas Bata University in Zlin, Faculty of Applied Informatics, T.G. Masaryka 5555, 760 01 Zlin, Czech Republic {senkerik,pluhacek}@fai.utb.cz | |
utb.fulltext.dates | - | |
utb.fulltext.sponsorship | This work was principally supported by the Grant of SGS SP2014/170, by the Bio-Inspired Methods: research, development and knowledge transfer project, reg. no. CZ.1.07/2.3.00/20.0073 funded by Operational Programme Education for Competitiveness, co-financed by ESF and state budget of the Czech Republic, IGA project No. IGA/FAI/2014/010, CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, GACR No. P103/13/08195S, SGS No. SP2014/159 and project CZ.1.07/2.3.00/20.0072. |