Publikace UTB
Repozitář publikační činnosti UTB

The influence of design and processing parameters on the mixing performance of a fluted mixer

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title The influence of design and processing parameters on the mixing performance of a fluted mixer en
dc.contributor.author Kubík, Pavel
dc.contributor.author Zatloukal, Martin
dc.contributor.author Asai, Yutaro
dc.contributor.author Haruna, Ryuichi
dc.contributor.author Iwasaki, Yoshihiko
dc.contributor.author Vlček, Jiří
dc.contributor.author Paseka, Ilja
dc.relation.ispartof Annual Technical Conference - ANTEC, Conference Proceedings
dc.identifier.isbn 978-1-63266-530-0
dc.date.issued 2013
utb.relation.volume 2
dc.citation.spage 1481
dc.citation.epage 1488
dc.event.title 71st Annual Technical Conference of the Society of Plastics Engineers 2013, ANTEC 2013
dc.event.location Cincinnati, OH
utb.event.state-en United States
utb.event.state-cs Spojené státy americké
dc.event.sdate 2013-04-22
dc.event.edate 2013-04-24
dc.type conferenceObject
dc.language.iso en
dc.publisher Society of Plastics Engineers
dc.relation.uri http://app.knovel.com/web/view/pdf/show.v/rcid:kpQQGV63MF/cid:kt00U1MX32/viewerType:pdf/root_slug:antec-2013-proceedings/url_slug:influence-design-processing
dc.relation.uri http://www.4spe.org/Resources/resource.aspx?ItemNumber=5616
dc.description.abstract In this paper, the mixing efficiency of two slightly different fluted mixing elements is studied. RGB spectral analysis is used for the quantification of the mixing. The overall mixing appears to be equal after sufficient mixing time. The mixer without the wiping flight, however, creates a stagnation layer of material which rotates between the mixer and the barrel. This layer is characterized by a long residence time. The residence time of the layer is twice as long as for a mixer with the wiping flight. The long residence time is again measured by RGB spectral analysis and also visualized in the video. The results of a 3D FEM simulation shows that the mass flow rate of the stagnation layer represents almost 50% of the total mass flow rate. en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1004660
utb.identifier.obdid 43871030
utb.identifier.scopus 2-s2.0-84903538511
utb.identifier.coden ACPED
utb.source d-scopus
dc.date.accessioned 2015-06-04T12:54:45Z
dc.date.available 2015-06-04T12:54:45Z
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Kubík, Pavel
utb.contributor.internalauthor Zatloukal, Martin
utb.fulltext.affiliation Pavel Kubik, Tomas Bata University in Zlín, Department of Polymer Engineering, Zlín, Czech Republic Martin Zatloukal, Tomas Bata University in Zlín, Centre of Polymer Systems, Polymer Centre, Zlín, Czech Republic Yutaro Asai, I.T.S. Japan Corporation, Misaki, Funabashi-shi, Chiba, Japan Ryuichi Haruna and Yoshihiko Iwasaki, Pla Giken Co. LTD,Toyotsu-cho, Suita-city, Osaka, Japan Jiri Vlcek, Compuplast International Inc., Zlín, Czech Republic Ilja Paseka, Compuplast Software spol. s r. o., Zlín, Czech Republic
utb.fulltext.dates -
utb.fulltext.references 1. A. L. Kelly, E. C. Brown and P. D. Coates, Polymer Engineering and Science 46, 1706-1714 (2006). 2. D. Strutt, C. Tzoganakis and T. A. Duever, Polymer Engineering and Science 40, 992-1003 (2000). 3. B. Elbirli, J. T. Lindt, S. R. Gottgetreu, and S. M. Baba, SPE-ANTEC Tech. Papers 29, 104 (1983). 4. A. Kiani, R. Rakos, and D. H. Sebastian, SPE-ANTEC Tech. Papers 35, 62 (1989). 5. G. M. Gale, SPE-ANTEC Tech. Papers 29, 109 (1983). 6. D. Herridge and D. Krueger, SPE-ANTEC Tech. Papers 48, 633 (1991). 7. G. Shearer and C. Tzoganakis, Advances in Polymer Technology 20, 169–190 (2001). 8. D. Strutt, C. Tzoganakis and T. A. Duever, Advances in Polymer Technology 19, 22–33 (2000). 9. M. A. Huneault, M. F. Champagne and A. Luciani, Polymer Engineering and Science 36, 1694-1706 (1996). 10. V. L. Bravo and A. N. Hrymak, Polymer Engineering and Science, 40, 525-541 (2000). 11. V. L. Bravo, A. N. Hrymak and J. D. Wright, Polymer Engineering and Science 44, 779-793 (2004). 12. R. Valette, T. Coupez, C. David and B. Vergnes, International Polymer Processing 24, 141-147 (2009). 13. T. Ishikawa, et al., International Polymer Processing 21, 354-360 (2006). 14. C. Rauwendall, Polymer Extrusion, Munich: Carl Hanser Verlag, 1990. 15. B. H. Maddock, SPE Journal, 23, 23 (1967) 16. Z. Tadmor and I. Klein, Polymer Engineering and Science 13, 382-389 (1973). 17. Z . Tadmor, E. Broyer, and C. Guttfinger, Polymer Engineering and Science 14, 660-665 (1974). 18. M. E. Ghir, C. G. Gogos, D. W. YU, D. B. Todd and B. David, Advances in Polymer Technology 17, 1-17 (1998).
utb.fulltext.sponsorship The authors would like to thank the Plagiken co., Ltd for financing the experiments and Compuplast International, Inc. for supplying of the VEL TM software. The authors also wish to acknowledge Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111) for the financial support.
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam