Zobrazit minimální záznam


dc.title Neural network synthesis en
dc.contributor.author Vařacha, Pavel
dc.relation.ispartof MENDEL 2012
dc.identifier.issn 1803-3814 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-80-214-4540-6
dc.date.issued 2012
dc.citation.spage 274
dc.citation.epage 279
dc.event.title 18th International Conference on Soft Computing, MENDEL 2012
dc.event.location Brno
utb.event.state-en Czech Republic
utb.event.state-cs Česká republika
dc.event.sdate 2012-06-27
dc.event.edate 2012-06-29
dc.type conferenceObject
dc.language.iso en
dc.publisher Brno University of Technology
dc.subject Analytic programming en
dc.subject Neural network en
dc.subject Optimization en
dc.subject SOMA en
dc.description.abstract This report describes a feed forward Artificial Neural Network (ANN) synthesis via an Analytic Programming (AP) by means of the ANN creation, learning and optimization. This process encompasses four different fields: Evolutionary Algorithms, Symbolic Regression, ANN and parallel computing to successfully synthesize a suitable ANN within a reasonable time. ANN synthesis proved to be a useful and efficient tool for nonlinear modeling and its results were applied to intelligent system controlling an energetic framework of an urban agglomeration. Furthermore, the ANN synthesis proved to have the ability to synthesize smaller ANN than the Genetic Programming (GP) while simultaneously almost infinitely complex ANN can be synthesized by the application of multiple evolution loops. This process can also produce ANN with feed forward branching, which is an unavailable quality for the GP. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1004714
utb.identifier.obdid 43869034
utb.identifier.scopus 2-s2.0-84883033668
utb.source d-scopus
dc.date.accessioned 2015-06-04T12:55:03Z
dc.date.available 2015-06-04T12:55:03Z
utb.contributor.internalauthor Vařacha, Pavel
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam