Kontaktujte nás | Jazyk: čeština English
dc.title | 3D modelling of filtration process through polymeric nanofiber based nonwovens | en |
dc.contributor.author | Sambaer, Wannes | |
dc.contributor.author | Zatloukal, Martin | |
dc.contributor.author | Kimmer, Dušan | |
dc.relation.ispartof | Annual Technical Conference - ANTEC, Conference Proceedings | |
dc.identifier.isbn | 978-1-61782-960-4 | |
dc.date.issued | 2011 | |
utb.relation.volume | 2 | |
dc.citation.spage | 1149 | |
dc.citation.epage | 1154 | |
dc.event.title | 69th Annual Technical Conference of the Society of Plastics Engineers 2011, ANTEC 2011 | |
dc.event.location | Boston, MA | |
utb.event.state-en | United States | |
utb.event.state-cs | Spojené státy americké | |
dc.event.sdate | 2011-05-01 | |
dc.event.edate | 2011-05-05 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.relation.uri | http://www.4spe.org/Resources/resource.aspx?ItemNumber=10187 | |
dc.description.abstract | Full 3D particle filtration modeling at low pressures considering slip/transition/free molecular flow regime, particle-fiber interactions, air/particle slip, sieve and homogenous flow field has been performed for the polyurethane nanofiber filter prepared by electrospinning process. The obtained theoretical predictions for the filtration efficiency have been compared with the corresponding experimental data and good agreement between both data sets has been obtained. In order to take all real structure features of the nanofiber filter into account (such as varying fiber diameter, curvature along its length, inhomogeneity and mat defects), a new approach for 3D nanofiber mat model construction from corresponding SEM images has been proposed and utilized. | en |
utb.faculty | Faculty of Technology | |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1004857 | |
utb.identifier.obdid | 43866620 | |
utb.identifier.scopus | 2-s2.0-80051812684 | |
utb.identifier.coden | ACPED | |
utb.source | d-scopus | |
dc.date.accessioned | 2015-06-04T12:55:46Z | |
dc.date.available | 2015-06-04T12:55:46Z | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Sambaer, Wannes | |
utb.contributor.internalauthor | Zatloukal, Martin | |
utb.fulltext.affiliation | Wannes Sambaer 1,2 , Martin Zatloukal 1,2 and Dusan Kimmer 3 1 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 275, 762 72 Zlín, Czech Republic 2 Centre of Polymer Systems, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic 3 SPUR a.s., T. Bati 299, 764 22 Zlín, Czech Republic | |
utb.fulltext.dates | - | |
utb.fulltext.references | 1. Andrady, A.L., Science and technology of polymers nanofibers, John Wiley & Sons, Inc., New Jersey (2008). 2. Hosseini, S.A., Tafreshi, H.V., Chemical Engineering and Science 65, 2249-2254 (2010). 3. Fotovati, S., Tafreshi, H.V., Pourdeyhimi, B., Chemical Engineering and Science 65, 5285-5293 (2010). 4. Ashari, A., Tafreshi, H.V., Chemical Engineering and Science 64, 2067-2075 (2009). 5. Tafreshi, H.V., Rahman, M.S.A., Jaganathan, S., Wang, Q., Pourdeyhimi, B., Chemical Engineering and Science 64, 1154-1159 (2009). 6. Jaganathan, S., Tafreshi, H.V., Journal of Colloid and Interface Science, 326, 166-175 (2008). 7. Jaganathan, S., Tafreshi, H.V., Pourdeyhimi, B., Chemical Engineering and Science 63, 244-252 (2008). 8. Zobel, S., Maze, B., Tafreshi, H.V., Wang, Q., Pourdeyhimi, B., Chemical Engineering and Science 62, 6285-6296 (2007). 9. Wang, Q., Maze, B., Tafreshi, H.V., Pourdeyhimi, B., Chemical Engineering and Science 62, 4817-4821 (2007). 10. Maze, B., Tafreshi, H.V., Wang, Q., Pourdeyhimi, B, Journal of Aerosol Science 38, 550-571 (2007). 11. Wang, Q., Mazé, B., Tafreshi, H.V., Pourdeyhimi, B., Chemical Engineering and Science 61, 8085-8088 (2006). 12. Wang, Q., Maze, B., Tafreshi, H.V., Pourdeyhimi, B., Chemical Engineering and Science 61, 4871-4883 (2006). 13. Hosseini, S.A., Tafreshi, H.V., Powder Technology 201, 153-160 (2010). 14. McNenly, M.J., Gallis, M.A., Boyd, I.D., International Journal for Numerical Methods in Fluids 49, 1169-1191 (2005). 15. Pich J., Ann Occup Hyg. 9, 23-27 (1966). 16. Brown R.C. Air Filtration: An integrated Approuch to the Theory and Applications of Fibrous Filters, Oxford: Pergamon Press (1993). 17. Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd edition, Wiley-Interscience (1999), ISBN: 04-711-941-01. 18. Davis, C.N., Air Filtration, Londen, Academic Press Inc (1973), ISBN: 01-220-566-04 . 19. Sambaer, W., Zatloukal, M., Kimmer, D., Polymer Testing 29, 82–94 (2010). 20. Ghasemi-Mobarakeh, L., Semnani, D., Morshed, M., J. Appl. Polym. Sci. 106, 2536–2542 (2007). 21. Ignacio Arganda-Carreras, Rodrigo Fernandez-Gonzalez, Arrate Munoz-Barrutia, Carlos Ortiz-De-Solorzano, Microscopy Research and Technique (2010), in press. 22. Altmann, J., Ripperger, S., Journal of membrane Science 124, 119-128 (1997). | |
utb.fulltext.sponsorship | The authors wish to acknowledge Grant Agency of the Czech Republic, grant No. P108/10/1325 for the financial support and Matti Lehtimaki, Hannu Salmela from VTT Technical Research Centre of Finland, Tampere for their work on the experimental filtration efficiency measurements as well as support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111). |