Publikace UTB
Repozitář publikační činnosti UTB

Evolutionary identification of chaotic system

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Evolutionary identification of chaotic system en
dc.contributor.author Zelinka, Ivan
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Oplatková, Zuzana
dc.contributor.author Davendra, Donald David
dc.relation.ispartof IFAC Proceedings Volumes (IFAC-PapersOnline)
dc.identifier.issn 1474-6670 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-902661-65-4
dc.date.issued 2009
utb.relation.volume 2
utb.relation.issue PART 1
dc.citation.spage 308
dc.citation.epage 315
dc.event.title 2nd IFAC Conference on Analysis and Control of Chaotic Systems, CHAOS09
dc.event.location London
utb.event.state-en United Kingdom
utb.event.state-cs Spojené království
dc.event.sdate 2009-06-22
dc.event.edate 2009-06-24
dc.type conferenceObject
dc.language.iso en
dc.identifier.doi 10.3182/20090622-3-UK-3004.00058
dc.relation.uri http://www.ifac-papersonline.net/Detailed/42886.html
dc.subject Artificial intelligence en
dc.subject Chaos en
dc.subject Chaotic behaviour en
dc.subject Genetic algorithms en
dc.subject Identification en
dc.subject Regression en
dc.description.abstract Synthesis, identification and control of complex dynamical systems are usually extremely complicated. When classics methods are used, some simplifications are required which tends to lead to idealized solutions that are far from reality. In contrast, the class of methods based on evolutionary principles is successfully used to solve this kind of problems with a high level of precision. In this paper an alternative method of evolutionary algorithms, which has been successfully proven in many experiments like chaotic systems synthesis, neural network synthesis or electrical circuit synthesis. This paper discusses the possibility of using evolutionary algorithms for the identification of chaotic systems. The main aim of this work is to show that evolutionary algorithms are capable of the identification of chaotic systems without any partial knowledge of internal structure, i.e. based only on measured data. Two different evolutionary algorithms are presented and tested here in a total of 10 versions. Systems selected for numerical experiments here is the well-known logistic equation. For each algorithm and its version, repeated simulations were done, amounting to 50 simulations. According to obtained results it can be stated that evolutionary identification is an alternative and promising way as to how to identify chaotic systems. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1004907
utb.identifier.scopus 2-s2.0-79960941560
utb.source d-scopus
dc.date.accessioned 2015-06-04T12:55:57Z
dc.date.available 2015-06-04T12:55:57Z
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.rights.access openAccess
utb.contributor.internalauthor Zelinka, Ivan
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Oplatková, Zuzana
utb.contributor.internalauthor Davendra, Donald David
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Unported Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Unported