Publikace UTB
Repozitář publikační činnosti UTB

Influence of branching density in ethylene-octene copolymers on electron beam crosslinkability

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Influence of branching density in ethylene-octene copolymers on electron beam crosslinkability en
dc.contributor.author Svoboda (FT), Petr
dc.relation.ispartof Polymers
dc.identifier.issn 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2015
utb.relation.volume 7
utb.relation.issue 12
dc.citation.spage 2522
dc.citation.epage 2534
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/polym7121530
dc.relation.uri http://www.mdpi.com/2073-4360/7/12/1530
dc.subject ethylene-octene copolymer en
dc.subject electron beam irradiation en
dc.subject crosslinking en
dc.subject rheology en
dc.subject creep en
dc.description.abstract Two ethylene-octene copolymers (EOC) with the same melt flow index (MFI = 3 g/10 min) but different octene contents, being 20 and 35 wt % (EOC-20 and EOC-35), were compared with regard to sensitivity to electron beam crosslinking. Dynamic mechanical analysis (DMA) revealed a large influence of the octene content on the storage modulus and the glass transition temperature (Tg) but a smaller influence of irradiation on the properties below melting point (Tm). Rheology at 150 °C pointed out large differences in samples crosslinked in the 0-60 kGy range and at lower frequencies (0.1-1 Hz). The loss factor tanδ confirmed that before irradiation the two copolymers were very similar, while after irradiation to 120 kGy, the EOC-35 had considerably lower tanδ than EOC-20, which corresponds to a better elasticity (or a higher level of crosslinking). A high-temperature creep test showed a considerably lower creep for EOC with a higher octene content. An analysis of the insoluble gel content exhibited higher values for EOC-35 confirming a higher level of crosslinking. Analysis according to the Charlesby-Pinner equation revealed increased crosslinking-to-scission ratio, G(X)/G(S), for EOC-35. While the G(X) value changed only slightly, a significant decrease in the G(S) value was discovered. © 2015 by the authors. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1006187
utb.identifier.obdid 43874214
utb.identifier.scopus 2-s2.0-84953708425
utb.identifier.wok 000367532200004
utb.source j-scopus
dc.date.accessioned 2016-04-28T10:37:56Z
dc.date.available 2016-04-28T10:37:56Z
dc.description.sponsorship Internal Grant Agency of the Tomas Bata University in Zlin [IGA/FT/2015/007]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Svoboda (FT), Petr
utb.fulltext.affiliation Petr Svoboda Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 762 72 Zlin, Czech Republic; svoboda@ft.utb.cz; Tel.: +420-576-031-335; Fax: +420-577-210-172 Academic Editor: Seth Darling
utb.fulltext.dates Received: 11 November 2015; Accepted: 26 November 2015; Published: 2 December 2015
utb.fulltext.references 1. Chum, P.S.; Kao, C.I.; Knight, G.W. Structure-property relationships in polyolefins made by constrained geometry catalyst technology. Plast. Eng. 1995, 51, 21–23. 2. Alamo, R.G.; Viers, B.D.; Mandelkern, L. Phase-structure of random ethylene copolymers—A study of counit content and molecular-weight as independent variables. Macromolecules 1993, 26, 5740–5747. [CrossRef] 3. Bensason, S.; Minick, J.; Moet, A.; Chum, S.; Hiltner, A.; Baer, E. Classification of homogeneous ethylene-octene copolymers based on comonomer content. J. Polym. Sci. B Polym. Phys. 1996, 34, 1301–1315. [CrossRef] 4. Wood-Adams, P.M.; Dealy, J.M.; Degroot, A.W.; Redwine, O.D. Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 2000, 33, 7489–7499. [CrossRef] 5. Minick, J.; Moet, A.; Hiltner, A.; Baer, E.; Chum, S.P. Crystallization of very-low-density copolymers of ethylene with α-olefins. J. Appl. Polym. Sci. 1995, 58, 1371–1384. [CrossRef] 6. Casey, P.; Chen, H.Y.; Poon, B.; Bensason, S.; Menning, B.; Liu, L.Z.; Hu, Y.S.; Hoenig, W.; Gelfer, M.; Dems, B.; et al. Polyolefin based crosslinked elastic fiber: A technical review of DOW XLA™ elastic fiber technology. Polym. Rev. 2008, 48, 302–316. [CrossRef] 7. Li, J.Q.; Peng, J.; Qiao, J.L.; Jin, D.B.; Wei, G.S. Effect of gamma Irradiation on ethylene-octene copolymers. Radiat. Phys. Chem. 2002, 63, 501–504. [CrossRef] 8. Abe, S.; Yamaguchi, M. Study on the Foaming of crosslinked polyethylene. J. Appl. Polym. Sci. 2001, 79, 2146–2155. [CrossRef] 9. Vachon, C.; Gendron, R. Effect of gamma-irradiation on the foaming behavior of ethylene-co-octene polymers. Radiat. Phys. Chem. 2003, 66, 415–425. [CrossRef] 10. Kale, L.T.; Plumley, T.A.; Patel, R.M.; Redwine, O.D.; Jain, P. Structure-property relationships of ethylene/1-octene and ethylene/1-butene copolymers made using insite technology. J. Plast. Film Sheeting 1996, 12, 27–40. 11. Nicolas, J.; Ressia, J.A.; Valles, E.M.; Merino, J.C.; Pastor, J.M. Characterization of metallocene ethylene-1-octene copolymers with high comonomer content cross-linked by dicumyl peroxide or β-radiation. J. Appl. Polym. Sci. 2009, 112, 2691–2700. [CrossRef] 12. Sirisinha, K.; Meksawat, D. Comparison in processability and mechanical and thermal properties of ethylene-octene copolymer crosslinked by different techniques. J. Appl. Polym. Sci. 2004, 93, 1179–1185. [CrossRef] 13. Sirisinha, K.; Meksawat, D. Changes in properties of silane-water crosslinked metallocene ethylene-octene copolymer after prolonged crosslinking time. J. Appl. Polym. Sci. 2004, 93, 901–906. [CrossRef] 14. Jiao, C.M.; Wang, Z.Z.; Gui, Z.; Hu, Y. Silane grafting and crosslinking of ethylene-octene copolymer. Eur. Polym. J. 2005, 41, 1204–1211. [CrossRef] 15. Sirisinha, K.; Meksawat, D. Preparation and properties of metallocene ethylene copolymer crosslinked by vinyltrimethoxysilane. Polym. Int. 2005, 54, 1014–1020. [CrossRef] 16. Sirisinha, K.; Chimdist, S. Comparison of techniques for determining crosslinking in silane-water crosslinked materials. Polym. Test 2006, 25, 518–526. [CrossRef] 17. Kamphunthong, W.; Sirisinha, K. Structure development and viscoelastic properties in silane-crosslinked ethylene-octene copolymer. J. Appl. Polym. Sci. 2008, 109, 2347–2353. [CrossRef] 18. Sirisinha, K.; Chimdist, S. Silane-crosslinked ethylene-octene copolymer blends: thermal aging and crystallization study. J. Appl. Polym. Sci. 2008, 109, 2522–2528. [CrossRef] 19. Sirisinha, K.; Kamphunthong, W. Rheological analysis as a means for determining the silane crosslink network structure and content in crosslinked polymer composites. Polym. Test 2009, 28, 636–641. [CrossRef] 20. Bailly, M.; Kontopoulou, M.; El Mabrouk, K. Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites. Polymer 2010, 51, 5506–5515. [CrossRef] 21. Garnier, L.; Duquesne, S.; Casetta, M.; Lewandowski, M.; Bourbigot, S. Melt spinning of silane-water cross-linked polyethylene-octene through a reactive extrusion process. React. Funct. Polym. 2010, 70, 775–783. [CrossRef] 22. Kamphunthong, W.; Sirisinha, K. Thermal property improvement of ethylene-octene copolymer through the combined introduction of filler and silane crosslink. J. Appl. Polym. Sci. 2010, 115, 424–430. [CrossRef] 23. Sirisinha, K.; Boonkongkaew, M.; Kositchaiyong, S. The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products. Polym. Test 2010, 29, 958–965. [CrossRef] 24. Chen, W.C.; Lai, S.M.; Qiu, R.Y.; Tang, S.X. Role of silane crosslinking on the properties of melt blended metallocene polyethylene-g-silane/clay nanocomposites at various clay contents. J. Appl. Polym. Sci. 2012, 124, 2669–2681. [CrossRef] 25. Nordin, R.; Ismail, H.; Ahmad, Z.; Rashid, A. Performance improvement of (linear low-density polyethylene)/poly(vinyl alcohol) blends by in situ silane crosslinking. J. Vinyl Addit. Technol. 2012, 18, 120–128. [CrossRef] 26. Sirisinha, K.; Boonkongkaew, M. Improved silane grafting of high-density polyethylene in the melt by using a binary initiator and the properties of silane-crosslinked products. J. Polym. Res. 2013, 20, 9. [CrossRef] 27. Perraud, S.; Vallat, M.F.; Kuczynski, J. Radiation crosslinking of poly(ethylene-co-octene) with electron beam radiation. Macromol. Mater. Eng. 2003, 288, 117–123. [CrossRef] 28. Mishra, J.K.; Chang, Y.W.; Lee, B.C.; Ryu, S.H. Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer. Radiat. Phys. Chem. 2008, 77, 675–679. [CrossRef] 29. Benson, R.S.; Moore, E.A.; Martinez-Pardo, M.E.; Zaragoza, D.L. Effect of gamma irradiation on ethylene-octene copolymers produced by constrained geometry catalyst. Nucl. Instrum. Meth. B 1999, 151, 174–180. [CrossRef] 30. Charlesby, A.; Pinner, S.H. Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Proc. R. Soc. Lon. Ser. A 1959, 249, 367–386. [CrossRef] 31. Dubey, K.A.; Chaudhari, C.V.; Rao, R.; Bhardwaj, Y.K.; Goel, N.K.; Sabharwal, S. Radiation processing and characterization of poly(vinyl alcohol) nano-composites, part 1: Nano-particulate filler tuned crosslinking behavior. J. Appl. Polym. Sci. 2010, 118, 3490–3498. [CrossRef] 32. Mondal, M.; Gohs, U.; Wagenknecht, U.; Heinrich, G. Efficiency of high energy electrons to produce polypropylene/natural rubber-based thermoplastic elastomer. Polym. Eng. Sci. 2013, 53, 1696–1705. [CrossRef] 33. Makuuchi, K.; Cheng, S. Radiation Processing Of Polymer Materilas And Its Industrial Applications; Wiley: New York, NY, USA, 2012. 34. Turgis, J.D.; Coqueret, X. Electron beam sensitivity of butyl acrylate copolymers: effects of composition on reactivity. Macromol. Chem. Phys. 1999, 200, 652–660. [CrossRef] 35. Liu, Z.Y.; Chen, S.J.; Zhang, J. Photodegradation of ethylene-octene copolymers with different octene contents. Polym. Degrad. Stab. 2011, 96, 1961–1972. [CrossRef]
utb.fulltext.sponsorship This work has been supported by the Internal Grant Agency of the Tomas Bata University in Zlin. Number IGA/FT/2015/007.
utb.fulltext.projects IGA/FT/2015/007
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International