Kontaktujte nás | Jazyk: čeština English
Název: | The interior Euler-Lagrange operator in field theory | ||||||||||
Autor: | Volná, Jana; Urban, Zbyněk | ||||||||||
Typ dokumentu: | Recenzovaný odborný článek (English) | ||||||||||
Zdrojový dok.: | Mathematica Slovaca. 2016, vol. 65, issue 6, p. 1427-1444 | ||||||||||
ISSN: | 0139-9918 (Sherpa/RoMEO, JCR) | ||||||||||
Journal Impact
This chart shows the development of journal-level impact metrics in time
|
|||||||||||
DOI: | https://doi.org/10.1515/ms-2015-0097 | ||||||||||
Abstrakt: | The paper is devoted to the interior Euler-Lagrange operator in field theory, representing an important tool for constructing the variational sequence. We give a new invariant definition of this operator by means of a natural decomposition of spaces of differential forms, appearing in the sequence, which defines its basic properties. Our definition extends the well-known cases of the Euler-Lagrange class (Euler-Lagrange form) and the Helmholtz class (Helmholtz form). This linear operator has the property of a projector, and its kernel consists of contact forms. The result generalizes an analogous theorem valid for variational sequences over 1-dimensional manifolds and completes the known heuristic expressions by explicit characterizations and proofs. (C) 2015 Mathematical Institute Slovak Academy of Sciences | ||||||||||
Plný text: | http://www.lepageri.eu/files/preprints/VolnaUrban-LRIPreprint2013-1.pdf | ||||||||||
Zobrazit celý záznam |