Kontaktujte nás | Jazyk: čeština English
dc.title | MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes | en |
dc.contributor.author | He, Ying | |
dc.contributor.author | Du, Shuangshuang | |
dc.contributor.author | Li, Huailong | |
dc.contributor.author | Cheng, Qilin | |
dc.contributor.author | Pavlínek, Vladimír | |
dc.contributor.author | Sáha, Petr | |
dc.relation.ispartof | Journal of Solid State Electrochemistry | |
dc.identifier.issn | 1432-8488 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2016 | |
utb.relation.volume | 20 | |
utb.relation.issue | 5 | |
dc.citation.spage | 1459 | |
dc.citation.epage | 1467 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.identifier.doi | 10.1007/s10008-016-3162-2 | |
dc.relation.uri | https://link.springer.com/article/10.1007/s10008-016-3162-2 | |
dc.subject | Carbon cloth | en |
dc.subject | Manganese dioxide | en |
dc.subject | Polyaniline | en |
dc.subject | Supercapacitor | en |
dc.description.abstract | A facile two-step strategy is developed for synthesis of MnO2/polyaniline (PANI) hybrid nanostructures on carbon cloth (CC). Vertically aligned PANI nanofiber arrays were firstly grown on CC via chemical oxidative polymerization, and MnO2 nanoparticles were then deposited on the surface of PANI nanofibers via redox reaction between PANI and KMnO4 solution. Structural and morphological characterizations of composites were investigated by FESEM, Raman, and XPS techniques, respectively. Electrochemical performance of the composites as supercapacitor electrode materials was evaluated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. The results demonstrate that the morphology and areal specific capacitance of the MnO2/PANI/CC composite vary with MnO2 deposition time. The ternary composite with 6 h MnO2 deposition exhibits a high areal capacitance of 1.56 F cm−2 at the scan rate of 10 mV s−1 and 0.99 F cm−2 at a current density of 2 mA cm−2 and still maintains 88.1 % of the original capacitance after 1000 charge-discharge cycles at a large current density of 10 mA cm−2.The excellent performance is due to the synergistic effect from the combination of two active pseudo materials and 3D conductive CC backbone. This study further highlights the importance of optimal design and control of material structures in supercapacitor applications. © 2016, Springer-Verlag Berlin Heidelberg. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1006383 | |
utb.identifier.obdid | 43875073 | |
utb.identifier.scopus | 2-s2.0-84959128880 | |
utb.identifier.wok | 000374840400027 | |
utb.source | j-scopus | |
dc.date.accessioned | 2016-07-26T14:58:23Z | |
dc.date.available | 2016-07-26T14:58:23Z | |
dc.description.sponsorship | National Natural Science Foundation of China [21371057]; Basic Research Program of Shanghai [13NM1400801]; International Cooperation Project of Shanghai Municipal Science and Technology Committee [15520721100] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | He, Ying | |
utb.contributor.internalauthor | Cheng, Qilin | |
utb.contributor.internalauthor | Pavlínek, Vladimír | |
utb.contributor.internalauthor | Sáha, Petr | |
utb.fulltext.affiliation | R. N. Salek, M. Černíková, S. Maděrová, L. Lapčík, F. Buňka1 1 Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China 2 Centre of Polymer Systems, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic |