Kontaktujte nás | Jazyk: čeština English
dc.title | Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition | en |
dc.contributor.author | Říhová-Škabrahová, Dana | |
dc.relation.ispartof | Applications of Mathematics | |
dc.identifier.issn | 0862-7940 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2001 | |
utb.relation.volume | 46 | |
utb.relation.issue | 2 | |
dc.citation.spage | 103 | |
dc.citation.epage | 144 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Springer Netherlands | |
dc.identifier.doi | 10.1023/A:1013783722140 | |
dc.relation.uri | http://www.dml.cz/handle/10338.dmlcz/134460 | |
dc.subject | Finite element method | en |
dc.subject | Parabolic-elliptic problems | en |
dc.subject | Two-dimensional electromagnetic field | en |
dc.description.abstract | The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ1 of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand side by the explicit Euler method). The scheme we get is linear. The strong convergence of the method is proved under the assumptions that the boundary #Ω is piecewise of class C3 and the initial condition belongs to L2 only. Strong monotonicity and Lipschitz continuity of the form a(v, w) is not an assumption, but a property of this form following from its physical background. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1006522 | |
utb.identifier.scopus | 2-s2.0-0040925984 | |
utb.identifier.coden | APMTE | |
utb.source | j-scopus | |
dc.date.accessioned | 2016-07-26T14:58:43Z | |
dc.date.available | 2016-07-26T14:58:43Z | |
utb.contributor.internalauthor | Říhová-Škabrahová, Dana | |
utb.fulltext.affiliation | Dana Říhová-Škabrahová Zlín Author’s address: Dana Říhová-Škabrahová, Department of Mathematics, Faculty of Technology, Mostní 5139, 762 72 Zlín, e-mail: rihova@zlin.vutbr.cz. | |
utb.fulltext.dates | Received March 16, 1999 | |
utb.fulltext.references | [1] J. Céa: Optimisation. Dunod, Paris, 1971. [2] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. [3] M. Crouzeix: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35 (1980), 257–276. [4] N. A. Demerdash, D. H. Gillot: A new approach for determination of eddy current and flux penetration in nonlinear ferromagnetic materials. IEEE Trans. MAG-10 (1974), 682–685. [5] J. Douglas, T. Dupont: Alternating-direction Galerkin methods in rectangles. In: Proceedings 2nd Sympos. Numerical Solution of Partial Differential Equations II. Academic Press, London and New York, 1971, pp. 133–214. [6] M. Feistauer, A. Ženíšek: Finite element solution of nonlinear elliptic problems. Numer. Math. 50 (1987), 451–475. [7] S. Fučík, A. Kufner: Nonlinear Differential Equations. SNTL, Praha, 1978. [8] D. Říhová-Škabrahová: A note to Friedrichs’ inequality. Arch. Math. 35 (1999), 317–327. [9] A. Ženíšek: Curved triangular finite Cm-elements. Apl. Mat. 23 (1978), 346–377. [10] A. Ženíšek: Approximations of parabolic variational inequalities. Appl. Math. 30 (1985), 11–35. [11] A. Ženíšek: Finite element variational crimes in parabolic-elliptic problems. Numer. Math. 55 (1989), 343–376. [12] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990. [13] M. Zlámal: Curved elements in the finite element method. I. SIAM J. Numer. Anal. 10 (1973), 229–240. [14] M. Zlámal: Finite element solution of quasistationary nonlinear magnetic field. RAIRO Modél. Math. Anal. Numér. 16 (1982), 161–191. [15] M. Zlámal: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields. Math. Comp. 41 (1983), 425–440. | |
utb.fulltext.sponsorship | - | |
utb.fulltext.projects | - | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.ou | Department of Mathematics | |
utb.identifier.jel | - |