Publikace UTB
Repozitář publikační činnosti UTB

Multi-chaotic system induced success-history based adaptive differential evolution

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Multi-chaotic system induced success-history based adaptive differential evolution en
dc.contributor.author Viktorin, Adam
dc.contributor.author Pluháček, Michal
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.identifier.issn 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-3-319-39377-3
dc.identifier.isbn 978-3-319-39378-0
dc.date.issued 2016
utb.relation.volume 9692
dc.citation.spage 517
dc.citation.epage 527
dc.event.title 15th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2016
dc.event.location Zakopane
utb.event.state-en Poland
utb.event.state-cs Polsko
dc.event.sdate 2016-06-12
dc.event.edate 2016-06-16
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Verlag
dc.identifier.doi 10.1007/978-3-319-39378-0_44
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-319-39378-0_44
dc.subject Deterministic chaos en
dc.subject Differential Evolution en
dc.subject Parent selection en
dc.subject Pseudo-Random Number Generator en
dc.subject SHADE en
dc.description.abstract This research paper combines two soft computing fields – chaos theory and evolutionary computing. The proposed multi-chaotic system implements five different chaotic maps as a Pseudo-Random Number Generators (PRNGs) for parent selection process in Differential Evolution (DE) and Success-History based Adaptive Differential Evolution (SHADE) algorithms. The probabilities for selecting chaotic maps are adapted and the adaptation process is based on the previous successful solutions. Therefore, PRNG varies for different test functions. The performance of multi-chaotic system induced DE and SHADE is compared against their canonical versions on CEC2015 benchmark set. Acquired results show that replacing classic PRNG with multi-chaotic PRNG can lead sto improvement in terms of convergence speed and ability to reach the global optimum. © Springer International Publishing Switzerland 2016. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1006551
utb.identifier.obdid 43876086
utb.identifier.scopus 2-s2.0-84976632226
utb.identifier.wok 000389514800044
utb.source d-scopus
dc.date.accessioned 2016-08-09T14:02:58Z
dc.date.available 2016-08-09T14:02:58Z
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.affiliation Adam Viktorin, Michal Pluhacek, Roman Senkerik Faculty of Applied Informatics, Tomas Bata University in Zlin, Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic {aviktorin,pluhacek,senkerik}@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam