Kontaktujte nás | Jazyk: čeština English
dc.title | Furfural production from d-xylose and xylan by using stable Nafion NR50 and NaCl in a microwave-assisted biphasic reaction | en |
dc.contributor.author | Le Guenic, Sarah | |
dc.contributor.author | Gergela, David | |
dc.contributor.author | Ceballos, Claire | |
dc.contributor.author | Delbecq, Frederic | |
dc.contributor.author | Len, Christophe | |
dc.relation.ispartof | Molecules | |
dc.identifier.issn | 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2016 | |
utb.relation.volume | 21 | |
utb.relation.issue | 8 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI AG | |
dc.identifier.doi | 10.3390/molecules21081102 | |
dc.relation.uri | http://www.mdpi.com/1420-3049/21/8/1102 | |
dc.subject | furfural | en |
dc.subject | D-xylose | en |
dc.subject | xylan | en |
dc.subject | Nafion NR50 | en |
dc.subject | biphasic system | en |
dc.subject | microwave-assisted dehydration | en |
dc.description.abstract | Pentose dehydration and direct transformation of xylan into furfural were performed in a water-cyclopentyl methyl ether (CPME) biphasic system under microwave irradiation. Heated up between 170 and 190 degrees C in the presence of Nafion NR50 and NaCl, D-xylose, L-arabinose and xylan gave furfural with maximum yields of 80%, 42% and 55%, respectively. The influence of temperature and reaction time on the reaction kinetics was discussed. This study was also completed by the survey of different reactant ratios, such as organic layer-water or catalyst-inorganic salt ratios. The exchange between proton and cation induced by an excess of NaCl was monitored, and a synergetic effect between the remaining protons and the released HCl was also discovered. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1006793 | |
utb.identifier.obdid | 43875265 | |
utb.identifier.scopus | 2-s2.0-84983605970 | |
utb.identifier.wok | 000382334600140 | |
utb.source | j-wok | |
dc.date.accessioned | 2016-12-22T16:19:12Z | |
dc.date.available | 2016-12-22T16:19:12Z | |
dc.description.sponsorship | Ministere de l'Education Nationale et de la Recherche | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.contributor.internalauthor | Gergela, David | |
utb.fulltext.affiliation | Sarah Le Guenic 1 , David Gergela 2 , Claire Ceballos 3 , Frederic Delbecq 3 and Christophe Len 1, * 1 Université de Technologie de Compiègne (UTC), CS 60319, 60203 Compiègne Cedex, France; sarah.le-guenic@utc.fr 2 Department of Chemistry, Faculty of Technology, 760 01 Zlin, Czech Republic; David.Gergela@seznam.cz 3 Ecole Supérieure de Chimie Organique et Minérale (ESCOM), 1 rue du Réseau Jean-Marie Buckmaster, 60200 Compiègne, France; c.ceballos@escom.fr (C.C.); f.delbecq@escom.fr (F.D.) * Correspondence: christophe.len@utc.fr; Tel.: +33-344-238-828 | |
utb.fulltext.dates | Received: 9 July 2016; Accepted: 10 August 2016; Published: 22 August 2016 | |
utb.fulltext.references | 1. Hoydonckx, H.E.; Van Rhijn, W.M.; Van Rhijn, W.; De Vos, D.E.; Jacobs, P.A. Furfural and derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2000; Volume 16, pp. 285–313. 2. Kamireddy, S.R.; Kozliak, E.I.; Tucker, M.; Ji, Y. Kinetic features of xylan de-polymerization in production of xylose monomer and furfural during acid pretreatment for kenaf, foragesorghums and sunn hemp feedstocks. Int. Agric. Biol. Eng. 2014, 7, 86–98. 3. Marcotullio, G.; De Jong, W. Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions. Green Chem. 2010, 12, 1739–1746. [CrossRef] 4. Fulmer, E.I.; Christensen, L.M.; Hixon, R.M.; Foster, R.L. The production of furfural from xylose solutions by means of hydrochloric acid-sodium chloride systems. J. Phys. Chem. 1936, 40, 133–141. [CrossRef] 5. Rong, C.; Ding, X.; Zhu, Y.; Li, Y.; Wang, L.; Qu, Y.; Ma, X.; Wang, Z. Production of furfural from xylose at atmospheric pressure by dilute sulfuric acide and inorganic salts. Carbohydr. Res. 2012, 350, 77–80. [CrossRef] [PubMed] 6. Yemis, O.; Mazza, G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 2011, 102, 7371–7378. [CrossRef] [PubMed] 7. Takagaki, J.; Ohara, M.; Nishimura, S.; Ebitani, K. One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts. Chem. Lett. 2010, 39, 838–840. [CrossRef] 8. Agirrezahal-Telleria, I.; Larreategui, A.; Requies, J.; Guemez, M.B.; Arias, P.L. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour. Technol. 2011, 102, 7478–7485. [CrossRef] [PubMed] 9. Aellig, C.; Scholz, D.; Dapsens, P.Y.; Mondelli, C.; Perez Ramirez, J. When catalyst meets reactor: Continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. Catal. Sci. Technol. 2015, 5, 142–149. [CrossRef] 10. Upare, P.P.; Hwang, D.W.; Hwang, Y.K.; Lee, V.H.; Hong, D.Y.; Chang, J.S. An integrated process for the production of 2,5-dimethylfuran from fructose. Green Chem. 2015, 17, 3310–3313. [CrossRef] 11. Dias, A.S.; Lima, S.; Carriazo, D.; Rives, V.; Pillinger, M.; Valente, A.A. Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural. J. Catal. 2006, 244, 230–237. [CrossRef] 12. Tureja, J.; Nishimura, S.; Ebitani, K. One-pot synthesis of furans from various saccharides using combination of solid acid and base catalysts. Bull. Chem. Soc. Jpn. 2012, 85, 275–281. 13. Moreau, C.; Durand, R.; Peyron, D.; Duhamet, J.; Rivalier, P. Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind. Crop Prod. 1998, 7, 95–99. [CrossRef] 14. Dias, A.S.; Lima, S.; Pillinger, M.; Valente, A.A. Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural. Carbohydr. Res. 2006, 341, 2946–2953. [CrossRef] [PubMed] 15. Lam, E.; Hajid, E.; Leung, A.C.W.; Chong, J.H.; Hahnoud, K.A.; Luong, J.H.T. Synthesis of furfural from xylose by heterogeneous and reusable Nafion catalysts. ChemSusChem 2011, 4, 535–541. [CrossRef] [PubMed] 16. Kim, S.J.; Dwiatmoko, A.A.; Choi, J.W.; Suh, Y.W.; Suh, D.J.; Oh, M. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour. Technol. 2010, 101, 8273–8279. [CrossRef] [PubMed] 17. Watanabe, K.; Yamagiwa, N.; Torisawa, Y. Cyclopentyl methyl ether as a new and alternative process solvent. Org. Process Res. Dev. 2007, 11, 251–258. [CrossRef] 18. Weingarten, R.; Cho, J.; Conner, W.C., Jr.; Huber, G.W. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chem. 2010, 12, 1423–1429. [CrossRef] 19. Yang, W.; Li, P.; Bo, D.; Chang, H.; Wang, X.; Zhu, T. Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system. Bioresour. Technol. 2013, 133, 361–369. [CrossRef] [PubMed] 20. Amiri, H.; Karimi, K.; Roodpeyma, S. Production of furans from rice straw by single-phase and biphasic systems. Carbohydr. Res. 2010, 345, 2133–2138. [CrossRef] [PubMed] 21. Chheda, J.N.; Roman-Leshkov, Y.; Dumesic, J.A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived monoa and poly-saccharides. Green Chem. 2007, 9, 342–350. [CrossRef] 22. Weingarten, R.; Tompsett, G.A.; Conner, W.C., Jr.; Huber, G.W. Design of solid acid catalysts for aqueous phase dehydration of carbohydrates. The role of Lewis and Bronsted acid sites. J. Catal. 2011, 279, 174–182. [CrossRef] 23. Le Guenic, S.; Delbecq, F.; Ceballos, C.; Len, C. Microwave-assisted dehydration of D-xylose into furfural by diluted inexpensive inorganic salts solution in a biphasic system. J. Mol. Catal. A Chem. 2015, 410, 1–7. [CrossRef] 24. Lopez, D.E.; Goodwin, J.G., Jr.; Bruce, D.A. Transesterification of triacetin with methanol on Nafion acid resins. J. Catal. 2007, 245, 381–391. [CrossRef] 25. Danon, B.; Hongsiri, W.; van der Aa, L.; de Jong, W. Kinetic study on homogeneous catalyzed xylose dehydration to furfural in the presence of arabinose and glucose. Biomass Bioenergy 2014, 66, 364–370. [CrossRef] 26. Kootstra, A.M.J.; Mosier, N.S.; Scott, E.L.; Beeftink, H.H.; Sanders, J.P.M. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochem. Eng. J. 2009, 43, 92–97. [CrossRef] 27. Gairola, K.; Smirnova, I. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2 kinetics and application to biomass hydrolysates. Bioresour. Technol. 2012, 123, 592–598. [CrossRef] [PubMed] 28. Garrett, E.R.; Dvorchik, B.H. Kinetics and mechanisms of the acid degradation of the aldopentose to furfural. J. Pharm. Sci. 1969, 58, 813–820. [CrossRef] [PubMed] 29. Sturm, G.S.J.; Verweij, M.D.; van Gerven, T.; Stankiewicz, A.I.; Staefanidis, G.D. On the effect of resonant microwave fields on temperature distribution in time and space. Int. J. Heat Mass Transf. 2012, 55, 3800–3811. [CrossRef] 30. Xiouras, C.; Radacsi, N.; Sturm, G.; Stefanidis, G.D. Furfural synthesis in the presence of sodium chloride: Microwaves versus conventional heating. ChemSusChem 2016. [CrossRef] [PubMed] | |
utb.fulltext.sponsorship | S.L.G. would like to thank the Ministère de l’Education Nationale et de la Recherche for the financial support. This work was performed in partnership with the COST Action FP 1306 Valorisation of ligno-cellulosic biomass streams for sustainable production of chemicals, materials and fuels using low environmental impact technologies. |