Publikace UTB
Repozitář publikační činnosti UTB

Application of finite difference method in the study of diffusion with chemical kinetics of first order

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Application of finite difference method in the study of diffusion with chemical kinetics of first order en
dc.contributor.author Beltrán-Prieto, Juan Carlos
dc.contributor.author Kolomazník, Karel
dc.relation.ispartof MATEC Web of Conferences 20th International Conference on Circuits, Systems, Communications and Computers (CSCC 2016)
dc.identifier.issn 2261-236X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2016
utb.relation.volume 76
dc.event.title 20th International Conference on Circuits, Systems, Communications and Computers (CSCC)
dc.event.location Corfu
utb.event.state-en Greece
utb.event.state-cs Řecko
dc.event.sdate 2016-07-14
dc.event.edate 2016-07-17
dc.type conferenceObject
dc.language.iso en
dc.publisher EDP Sciences
dc.identifier.doi 10.1051/matecconf/20167604032
dc.relation.uri https://www.matec-conferences.org/articles/matecconf/abs/2016/39/matecconf_cscc2016_04032/matecconf_cscc2016_04032.html
dc.description.abstract The mathematical modelling of diffusion of a bleaching agent into a porous material is studied in the present paper. Law of mass conservation was applied to analize the mass transfer of a reactant from the bulk into the external surface of a solid geometrically described as a flat plate. After diffusion of the reactant, surface reaction following kinetics of first order was considered to take place. The solution of the differential equation that described the process leaded to an equation that represents the concentration profile in function of distance, porosity and Thiele modulus. The case of interfacial mass resistance is also discused. In this case, finite difference method was used for the solution of the differential equation taking into account the respective boundary conditions. The profile of concentration can be obtained after numerical especification of Thiele modulus and Biot number. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1006981
utb.identifier.obdid 43875469
utb.identifier.scopus 2-s2.0-85016104185
utb.identifier.wok 000392332200109
utb.source d-wok
dc.date.accessioned 2017-07-13T14:50:29Z
dc.date.available 2017-07-13T14:50:29Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Beltrán-Prieto, Juan Carlos
utb.contributor.internalauthor Kolomazník, Karel
utb.fulltext.affiliation Juan Carlos Beltrán-Prieto 1,a, Karel Kolomazník 1 1 Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
utb.fulltext.dates -
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014).
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International