Kontaktujte nás | Jazyk: čeština English
dc.title | The impact of polymer grafting from a graphene oxide surface on its compatibility with a PDMS matrix and the light-induced actuation of the composites | en |
dc.contributor.author | Osička, Josef | |
dc.contributor.author | Ilčíková, Markéta | |
dc.contributor.author | Mrlík, Miroslav | |
dc.contributor.author | Minařík, Antonín | |
dc.contributor.author | Pavlínek, Vladimír | |
dc.contributor.author | Mosnáček, Jaroslav | |
dc.relation.ispartof | Polymers | |
dc.identifier.issn | 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.volume | 9 | |
utb.relation.issue | 7 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Molecular Diversity Preservation International (MDPI) | |
dc.identifier.doi | 10.3390/polym9070264 | |
dc.relation.uri | http://www.mdpi.com/2073-4360/9/7/264/htm | |
dc.subject | Grafting method | en |
dc.subject | Reversible deactivation radical polymerization | en |
dc.subject | Smart polymers | en |
dc.description.abstract | Poly(dimethyl siloxane) (PDMS)-based materials with improved photoactuation properties were prepared by the incorporation of polymer-grafted graphene oxide particles. The modification of the graphene oxide (GO) surface was achieved via a surface initiated atom transfer radical polymerization (SI ATRP) of methyl methacrylate and butyl methacrylate. The modification was confirmed by thermogravimetric analysis, infrared spectroscopy and electron microscopy. The GO surface reduction during the SI ATRP was investigated using Raman spectroscopy and conductivity measurements. Contact angle measurements, dielectric spectroscopy and dynamic mechanical analyses were used to investigate the compatibility of the GO filler with the PDMS matrix and the influence of the GO surface modification on its physical properties and the interactions with the matrix. Finally, the thermal conductivity and photoactuation properties of the PDMS matrix and composites were compared. The incorporation of GO with grafted polymer chains, especially poly(n-butyl methacrylate), into the PDMS matrix improved the compatibility of the GO filler with the matrix, increased the energy dissipation due to the improved flexibility of the PDMS chains, enhanced the damping behavior and increased the thermal conductivity. All the changes in the properties positively affected the photoactuation behavior of the PDMS composites containing polymer-grafted GO. © 2017 by the authors. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007212 | |
utb.identifier.obdid | 43876731 | |
utb.identifier.scopus | 2-s2.0-85021686386 | |
utb.identifier.wok | 000407726900013 | |
utb.source | j-scopus | |
dc.date.accessioned | 2017-09-03T21:40:01Z | |
dc.date.available | 2017-09-03T21:40:01Z | |
dc.description.sponsorship | LO1504, MOE, Ministry of Education | |
dc.description.sponsorship | Grant Agency of the Czech Republic [16-20361Y]; Ministry of Education, Youth and Sports of the Czech Republic-program NPU I [LO1504]; SRDA [APVV-15-0545]; VEGA [VEGA 2/0161/17]; Slovak Academy of Sciences [SAS-MOST JRP 2014-9] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Osička, Josef | |
utb.contributor.internalauthor | Mrlík, Miroslav | |
utb.contributor.internalauthor | Minařík, Antonín | |
utb.contributor.internalauthor | Pavlínek, Vladimír | |
utb.fulltext.affiliation | Josef Osicka 1 , Markéta Ilčíková 2 , Miroslav Mrlik 1 , Antonín Minařík 1 , Vladimir Pavlinek 1 and Jaroslav Mosnáček 2, * 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic; Josef.osicka@gmail.com (J.O.); mrlik@ft.utb.cz (M.M.); minarik@ft.utb.cz (A.M.); vladimir.pavlinek@5m.cz (V.P.) 2 Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava 45, Slovakia; upolmail@savba.sk * Correspondence: upolmosj@savba.sk; Tel.: +421-2-3229-4353 | |
utb.fulltext.dates | Received: 12 May 2017; Accepted: 27 June 2017; Published: 3 July 2017 | |
utb.fulltext.references | 1. Cohn, R.; Panchapakesan, B. Spatially nonuniform heating and the nonlinear transient response of elastomeric photomechanical actuators. Actuators 2016, 5, 16. [CrossRef] 2. Torras, N.; Zinoviev, K.E.; Camargo, C.J.; Campo, E.M.; Campanella, H.; Esteve, J.; Marshall, J.E.; Terentjev, E.M.; Omastova, M.; Krupa, I.; et al. Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sens. Actuators A 2014, 208, 104–112. [CrossRef] 3. Camargo, C.J.; Campanella, H.; Marshall, J.E.; Torras, N.; Zinoviev, K.; Terentjev, E.M.; Esteve, J. Batch fabrication of optical actuators using nanotube–elastomer composites towards refreshable braille displays. J. Micromech. Microeng. 2012, 22, 9. [CrossRef] 4. Marshall, J.E.; Gallagher, S.; Terentjev, E.M.; Smoukov, S.K. Anisotropic colloidal micromuscles from liquid crystal elastomers. J. Am. Chem. Soc. 2014, 136, 474–479. [CrossRef] [PubMed] 5. Baer, G.M.; Small, W.; Wilson, T.S.; Benett, W.J.; Matthews, D.L.; Hartman, J.; Maitland, D.J. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed. Eng. Online 2007, 6, 43. [CrossRef] [PubMed] 6. Maitland, D.J.; Metzger, M.F.; Schumann, D.; Lee, A.; Wilson, T.S. Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 2002, 30, 1–11. [CrossRef] [PubMed] 7. Lu, S.X.; Liu, Y.; Shao, N.; Panchapakesan, B. Nanotube micro-opto-mechanical systems. Nanotechnology 2007, 18, 065501. [CrossRef] 8. Zhang, X.; Yu, Z.B.; Wang, C.; Zarrouk, D.; Seo, J.W.T.; Cheng, J.C.; Buchan, A.D.; Takei, K.; Zhao, Y.; Ager, J.W.; et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5. [CrossRef] [PubMed] 9. Fan, X.M.; King, B.C.; Loomis, J.; Campo, E.M.; Hegseth, J.; Cohn, R.W.; Terentjev, E.; Panchapakesan, B. Nanotube liquid crystal elastomers: Photomechanical response and flexible energy conversion of layered polymer composites. Nanotechnology 2014, 25, 355501. [CrossRef] [PubMed] 10. Pei, Z.Q.; Yang, Y.; Chen, Q.M.; Terentjev, E.M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13, 36–41. [CrossRef] [PubMed] 11. Czanikova, K.; Torras, N.; Esteve, J.; Krupa, I.; Kasak, P.; Pavlova, E.; Racko, D.; Chodak, I.; Omastova, M. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes. Sens. Actuator B 2013, 186, 701–710. [CrossRef] 12. Czanikova, K.; Ilcikova, M.; Krupa, I.; Micusik, M.; Kasak, P.; Pavlova, E.; Mosnacek, J.; Chorvat, D.; Omastova, M. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy. Smart Mater. Struct. 2013, 22, 104001. [CrossRef] 13. Czanikova, K.; Krupa, I.; Ilcikova, M.; Kasak, P.; Chorvat, D.; Valentin, M.; Slouf, M.; Mosnacek, J.; Micusik, M.; Omastova, M. Photo-actuating materials based on elastomers and modified carbon nanotubes. J. Nanophotonics 2012, 6, 063522. [CrossRef] 14. Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Doroshenko, M.; Koynov, K.; Danko, M.; Mosnacek, J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer 2015, 72, 368–377. [CrossRef] 15. Liang, J.J.; Xu, Y.F.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.F.; Li, F.F.; Guo, T.Y.; Chen, Y.S. Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C 2009, 113, 9921–9927. [CrossRef] 16. Ahir, S.V.; Squires, A.M.; Tajbakhsh, A.R.; Terentjev, E.M. Infrared actuation in aligned polymer–nanotube composites. Phys. Rev. B 2006, 73, 085420. [CrossRef] 17. Park, J.H.; Dao, T.D.; Lee, H.I.; Jeong, H.M.; Kim, B.K. Properties of graphene/shape memory thermoplastic polyurethane composites actuating by various methods. Materials 2014, 7, 1520–1538. [CrossRef] 18. Loomis, J.; King, B.; Burkhead, T.; Xu, P.; Bessler, N.; Terentjev, E.; Panchapakesan, B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 2012, 23, 045501. [CrossRef] [PubMed] 19. Feng, Y.Y.; Qin, M.M.; Guo, H.Q.; Yoshino, K.; Feng, W. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density. ACS Appl. Mater. Interf. 2013, 5, 10882–10888. [CrossRef] [PubMed] 20. Fan, X.M.; Khosravi, F.; Rahneshin, V.; Shanmugam, M.; Loeian, M.; Jasinski, J.; Cohn, R.W.; Terentjev, E.; Panchapakesan, B. MoS 2 actuators: Reversible mechanical responses of MoS 2 –polymer nanocomposites to photons. Nanotechnology 2015, 26, 261001. [CrossRef] [PubMed] 21. Lei, Z.Y.; Zhu, W.C.; Sun, S.T.; Wu, P.Y. MoS 2 -based dual-responsive flexible anisotropic actuators. Nanoscale 2016, 8, 18800–18807. [CrossRef] [PubMed] 22. Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Chorvat, D.; Krupa, I.; Slouf, M.; Koynov, K.; Mosnacek, J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene–b–styrene block copolymer. Polymer 2014, 55, 211–218. [CrossRef] 23. Spitalsky, Z.; Danko, M.; Mosnacek, J. Preparation of functionalized graphene sheets. Curr. Org. Chem. 2011, 15, 1133–1150. [CrossRef] 24. Hui, C.M.; Pietrasik, J.; Schmitt, M.; Mahoney, C.; Choi, J.; Bockstaller, M.R.; Matyjaszewski, K. Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem. Mater. 2014, 26, 745–762. [CrossRef] 25. Ilcikova, M.; Mosnacek, J.; Mrlik, M.; Sedlacek, T.; Csomorova, K.; Czanikova, K.; Krupa, I. Influence of surface modification of carbon nanotubes on interactions with polystyrene–b–polyisoprene-b-polystyrene matrix and its photo-actuation properties. Polym. Adv. Technol. 2014, 25, 1293–1300. [CrossRef] 26. Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Slouf, M.; Zhigunov, A.; Koynov, K.; Mosnacek, J. Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes. ACS Macro Lett. 2014, 3, 999–1003. [CrossRef] 27. Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [CrossRef] 28. Ilcikova, M.; Mrlik, M.; Spitalsky, Z.; Micusik, M.; Csomorova, K.; Sasinkova, V.; Kleinova, A.; Mosnacek, J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. Catalysis of atom transfer radical polymerization. RSC Adv. 2015, 5, 3370–3376. [CrossRef] 29. Mrlik, M.; Ilcikova, M.; Plachy, T.; Pavlinek, V.; Spitalsky, Z.; Mosnacek, J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016, 283, 717–720. [CrossRef] 30. Yoon, J.T.; Lee, S.C.; Jeong, Y.G. Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos. Sci. Technol. 2010, 70, 776–782. [CrossRef] 31. Cvek, M.; Mrlik, M.; Ilcikova, M.; Mosnacek, M.; Munster, L.; Pavlínek, V. Synthesis of silicone elastomers containing silyl-based polymer-grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules 2017, 50, 2189–2200. [CrossRef] 32. Rabindranath, R.; Bose, H. On the mobility of iron particles embedded in elastomeric silicone matrix. J. Phys. Conf. Ser. 2013, 412, 012034. [CrossRef] | |
utb.fulltext.sponsorship | Authors Josef Osicka and Miroslav Mrlik thank the Grant Agency of the Czech Republic (No. 16-20361Y) for financial support. This work was also supported by the Ministry of Education, Youth and Sports of the Czech Republic—program NPU I (LO1504). Markéta Ilčíková and Jaroslav Mosnáček thank for financial support to the grant agencies SRDA and VEGA through projects APVV-15-0545 and VEGA 2/0161/17, respectively, as well as to Slovak Academy of Sciences through project SAS-MOST JRP 2014-9. | |
utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, Czech Republic; Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 45, Slovakia |