Kontaktujte nás | Jazyk: čeština English
dc.title | Different approaches for constant estimation in analytic programming | en |
dc.contributor.author | Komínková Oplatková, Zuzana | |
dc.contributor.author | Viktorin, Adam | |
dc.contributor.author | Šenkeřík, Roman | |
dc.contributor.author | Urbánek, Tomáš | |
dc.relation.ispartof | Proceedings - 31st European Conference on Modelling and Simulation, ECMS 2017 | |
dc.identifier.isbn | 978-0-9932440-4-9 | |
dc.date.issued | 2017 | |
dc.citation.spage | 326 | |
dc.citation.epage | 332 | |
dc.event.title | 31st European Conference on Modelling and Simulation, ECMS 2017 | |
dc.event.location | Budapest | |
utb.event.state-en | Hungary | |
utb.event.state-cs | Maďarsko | |
dc.event.sdate | 2017-05-23 | |
dc.event.edate | 2017-05-26 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | European Council for Modelling and Simulation | |
dc.identifier.doi | 10.7148/2017-0326 | |
dc.relation.uri | http://www.scs-europe.net/dlib/2017/2017-0326.htm | |
dc.relation.uri | http://www.scs-europe.net/dlib/2017/ecms2017acceptedpapers/0326-is_ECMS2017_0131.pdf | |
dc.subject | Analytic programming | en |
dc.subject | Differential evolution | en |
dc.subject | approximation | en |
dc.subject | sextic | en |
dc.subject | quintic | en |
dc.description.abstract | This research deals with different approaches for constant estimation in analytic programming (AP). AP is a tool for symbolic regression tasks which enables to synthesise an analytical solution based on the required behaviour of the system. Some tasks do not need any constant estimation-AP is used in its basic version without any constant estimation handling. Compared to this, cases like data approximation need constants (coefficients) which are essential for the process of precise solution synthesis. This paper offers another strategy to already known and used by the AP from the very beginning and approaches published recently in 2016. This paper compares these procedures and the discussion also includes nonlinear fitting and metaevolutionary approach. As the main evolutionary algorithm, a differential algorithm (de/rand/1/bin) for the main process of AP is used. © ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors). | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1007248 | |
utb.identifier.obdid | 43877325 | |
utb.identifier.scopus | 2-s2.0-85021823730 | |
utb.identifier.wok | 000404420000049 | |
utb.source | d-scopus | |
dc.date.accessioned | 2017-09-03T21:40:05Z | |
dc.date.available | 2017-09-03T21:40:05Z | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303, MSMT-7778/2014]; European Regional Development Fund under the project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Grant Agency of the Czech Republic - GACR [P103/15/06700S]; Internal Grant Agency of Tomas Bata University in Zlin [IGA/CebiaTech/2017/004] | |
utb.ou | CEBIA-Tech | |
utb.contributor.internalauthor | Komínková Oplatková, Zuzana | |
utb.contributor.internalauthor | Viktorin, Adam | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.contributor.internalauthor | Urbánek, Tomáš | |
utb.fulltext.affiliation | Zuzana Kominkova Oplatkova, Adam Viktorin, Roman Senkerik, Tomas Urbanek Tomas Bata University in Zlin, Faculty of Applied Informatics Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic {oplatkova, aviktorin, senkerik, turbanek}@fai.utb.cz | |
utb.fulltext.dates | - | |
utb.fulltext.references | Back T., Fogel D. B., Michalewicz Z., Handbook of evolutionary algorithms, Oxford University Press, 1997, ISBN 0750303921 Deugo D., Ferguson D.: Evolution to the xtreme: Evolving evolutionary strategies using a meta-level approach, Proceedings of the 2004 IEEE congress on evolutionary computation, IEEE Press, Portland, Oregon, pp. 31–38, 2004 Dioşan, L., Oltean, M.: Evolutionary design of evolutionary algorithms. Genetic Programming and Evolvable Machines, Vol. 10, Issue 3, p. 263-306, 2009 Edmonds, B.: Meta-genetic programming: Co-evolving the operators of variation, Elektrik, Vol. 9, Issue 1, pp. 13-29, 2001 Eiben A.E., Michalewicz Z., Schoenauer M., Smith J.E.: Parameter control in evolutionary algorithms, pp. 19–46, Springer, 2007 Jones D.F., Mirrazavi S.K., Tamiz M.: Multi-objective metaheuristics: An overview of the current state-of-the-art, European Journal of Operational Research, Volume 137, Issue 1, 16 February 2002, Pages 1-9, ISSN 0377-2217. Kominkova Oplatkova Z., Senkerik R. (2013): Evolutionary Synthesis of Complex Structures - Pseudo Neural Networks for the Task of Iris Dataset Classification. In Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems. Heidelberg : Springer-Verlag Berlin, 2013, p. 211-220. ISSN 2194-5357. ISBN 978-3-319-00541-6. Kominkova Oplatkova Z., Senkerik R. (2016): Control Law and Pseudo Neural Networks Synthesized by Evolutionary Symbolic Regression Technique, in Al-Begain K., Bargiela A.: Seminal Contributions to Modelling and Simulation - Part of the series Simulation Foundations, Methods and Applications, pp 91-113, doi: 10.1007/978-3-319-33786-9_9, ISBN: 978-3-319-33785-2. Kordík P., Koutník J., Drchal J., Kovářík O., Čepek M., Šnorek M.: Meta-learning approach to neural network optimization, Neural Networks, Vol. 23, Issue 4, p. 568-582, 2010, ISSN 0893-6080. Koza J. R. et al., Genetic Programming III; Darwinian Invention and problem Solving, Morgan Kaufmann Publisher, 1999, ISBN 1-55860-543-6 Koza J. R., Genetic Programming, MIT Press, 1998, ISBN 0-262-11189-6 Lampinen J., Zelinka I., 1999, “New Ideas in Optimization – Mechanical Engineering Design Optimization by Differential Evolution”, Volume 1, London: McGraw-hill, 1999, 20 p., ISBN 007-709506-5. O’Neill M., Ryan C., Grammatical Evolution. Evolutionary Automatic Programming in an Arbitrary Language, Kluwer Academic Publishers, 2003, ISBN 1402074441 Oplatkova Z.: Metaevolution: Synthesis of Optimization Algorithms by means of Symbolic Regression and Evolutionary Algorithms, Lambert Academic Publishing Saarbrücken, 2009, ISBN: 978-3-8383-1808-0 Price K., Storn R. M., Lampinen J. A., 2005, “Differential Evolution : A Practical Approach to Global Optimization”, (Natural Computing Series), Springer; 1 edition. Price, K. and Storn, R. (2001), Differential evolution homepage, [Online]: http://www.icsi.berkeley.edu/~storn/code.html, [Accessed 29/02/2012]. Urbanek T., Prokopova Z., Silhavy R., Kuncar A.: New Approach of Constant Resolving of Analytical Programming. In 30th European Conference on Modelling and Simulation, 2016, p. 231-236. ISBN 978-0-9932440-2-5. Viktorin A., Pluhacek M., Kominkova Oplatkova Z., Senkerik R.: Analytical Programming with Extended Individuals. In 30th European Conference on Modelling and Simulation, 2016, p. 237-244. ISBN 978-0-9932440-2-5. Volna, E., Kotyrba, M., & Jarusek, R. (2013). Multi-classifier based on Elliott wave’s recognition. Computers & Mathematics with Applications, 66(2), 213-225. Zelinka et al.: Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures, in Kita E.: Evolutionary Algorithms, InTech 2011, ISBN: 978-953-307-171-8 Zelinka I., Varacha P., Oplatkova Z., Evolutionary Synthesis of Neural Network, Mendel 2006 – 12th International Conference on Softcomputing, Brno, Czech Republic, 31 May – 2 June 2006, pages 25 – 31, ISBN 80-214-3195-4 Zelinka I.,Oplatkova Z, Nolle L., 2005. Boolean Symmetry Function Synthesis by Means of Arbitrary Evolutionary Algorithms-Comparative Study, International Journal of Simulation Systems, Science and Technology, Volume 6, Number 9, August 2005, pages 44 - 56, ISSN: 1473-8031. | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014) and also by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, further it was supported by Grant Agency of the Czech Republic—GACR P103/15/06700S and by Internal Grant Agency of Tomas Bata University in Zlin under the project No. IGA/CebiaTech/2017/004. | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam T.G. Masaryka 5555, Zlin, Czech Republic | |
utb.fulltext.projects | LO1303 | |
utb.fulltext.projects | MSMT-7778/2014 | |
utb.fulltext.projects | CZ.1.05/2.1.00/03.0089 | |
utb.fulltext.projects | P103/15/06700S | |
utb.fulltext.projects | IGA/CebiaTech/2017/004 |