Publikace UTB
Repozitář publikační činnosti UTB

Different approaches for constant estimation in analytic programming

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Different approaches for constant estimation in analytic programming en
dc.contributor.author Komínková Oplatková, Zuzana
dc.contributor.author Viktorin, Adam
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Urbánek, Tomáš
dc.relation.ispartof Proceedings - 31st European Conference on Modelling and Simulation, ECMS 2017
dc.identifier.isbn 978-0-9932440-4-9
dc.date.issued 2017
dc.citation.spage 326
dc.citation.epage 332
dc.event.title 31st European Conference on Modelling and Simulation, ECMS 2017
dc.event.location Budapest
utb.event.state-en Hungary
utb.event.state-cs Maďarsko
dc.event.sdate 2017-05-23
dc.event.edate 2017-05-26
dc.type conferenceObject
dc.language.iso en
dc.publisher European Council for Modelling and Simulation
dc.identifier.doi 10.7148/2017-0326
dc.relation.uri http://www.scs-europe.net/dlib/2017/2017-0326.htm
dc.relation.uri http://www.scs-europe.net/dlib/2017/ecms2017acceptedpapers/0326-is_ECMS2017_0131.pdf
dc.subject Analytic programming en
dc.subject Differential evolution en
dc.subject approximation en
dc.subject sextic en
dc.subject quintic en
dc.description.abstract This research deals with different approaches for constant estimation in analytic programming (AP). AP is a tool for symbolic regression tasks which enables to synthesise an analytical solution based on the required behaviour of the system. Some tasks do not need any constant estimation-AP is used in its basic version without any constant estimation handling. Compared to this, cases like data approximation need constants (coefficients) which are essential for the process of precise solution synthesis. This paper offers another strategy to already known and used by the AP from the very beginning and approaches published recently in 2016. This paper compares these procedures and the discussion also includes nonlinear fitting and metaevolutionary approach. As the main evolutionary algorithm, a differential algorithm (de/rand/1/bin) for the main process of AP is used. © ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors). en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007248
utb.identifier.obdid 43877325
utb.identifier.scopus 2-s2.0-85021823730
utb.identifier.wok 000404420000049
utb.source d-scopus
dc.date.accessioned 2017-09-03T21:40:05Z
dc.date.available 2017-09-03T21:40:05Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303, MSMT-7778/2014]; European Regional Development Fund under the project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Grant Agency of the Czech Republic - GACR [P103/15/06700S]; Internal Grant Agency of Tomas Bata University in Zlin [IGA/CebiaTech/2017/004]
utb.ou CEBIA-Tech
utb.contributor.internalauthor Komínková Oplatková, Zuzana
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Urbánek, Tomáš
utb.fulltext.affiliation Zuzana Kominkova Oplatkova, Adam Viktorin, Roman Senkerik, Tomas Urbanek Tomas Bata University in Zlin, Faculty of Applied Informatics Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic {oplatkova, aviktorin, senkerik, turbanek}@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.references Back T., Fogel D. B., Michalewicz Z., Handbook of evolutionary algorithms, Oxford University Press, 1997, ISBN 0750303921 Deugo D., Ferguson D.: Evolution to the xtreme: Evolving evolutionary strategies using a meta-level approach, Proceedings of the 2004 IEEE congress on evolutionary computation, IEEE Press, Portland, Oregon, pp. 31–38, 2004 Dioşan, L., Oltean, M.: Evolutionary design of evolutionary algorithms. Genetic Programming and Evolvable Machines, Vol. 10, Issue 3, p. 263-306, 2009 Edmonds, B.: Meta-genetic programming: Co-evolving the operators of variation, Elektrik, Vol. 9, Issue 1, pp. 13-29, 2001 Eiben A.E., Michalewicz Z., Schoenauer M., Smith J.E.: Parameter control in evolutionary algorithms, pp. 19–46, Springer, 2007 Jones D.F., Mirrazavi S.K., Tamiz M.: Multi-objective metaheuristics: An overview of the current state-of-the-art, European Journal of Operational Research, Volume 137, Issue 1, 16 February 2002, Pages 1-9, ISSN 0377-2217. Kominkova Oplatkova Z., Senkerik R. (2013): Evolutionary Synthesis of Complex Structures - Pseudo Neural Networks for the Task of Iris Dataset Classification. In Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems. Heidelberg : Springer-Verlag Berlin, 2013, p. 211-220. ISSN 2194-5357. ISBN 978-3-319-00541-6. Kominkova Oplatkova Z., Senkerik R. (2016): Control Law and Pseudo Neural Networks Synthesized by Evolutionary Symbolic Regression Technique, in Al-Begain K., Bargiela A.: Seminal Contributions to Modelling and Simulation - Part of the series Simulation Foundations, Methods and Applications, pp 91-113, doi: 10.1007/978-3-319-33786-9_9, ISBN: 978-3-319-33785-2. Kordík P., Koutník J., Drchal J., Kovářík O., Čepek M., Šnorek M.: Meta-learning approach to neural network optimization, Neural Networks, Vol. 23, Issue 4, p. 568-582, 2010, ISSN 0893-6080. Koza J. R. et al., Genetic Programming III; Darwinian Invention and problem Solving, Morgan Kaufmann Publisher, 1999, ISBN 1-55860-543-6 Koza J. R., Genetic Programming, MIT Press, 1998, ISBN 0-262-11189-6 Lampinen J., Zelinka I., 1999, “New Ideas in Optimization – Mechanical Engineering Design Optimization by Differential Evolution”, Volume 1, London: McGraw-hill, 1999, 20 p., ISBN 007-709506-5. O’Neill M., Ryan C., Grammatical Evolution. Evolutionary Automatic Programming in an Arbitrary Language, Kluwer Academic Publishers, 2003, ISBN 1402074441 Oplatkova Z.: Metaevolution: Synthesis of Optimization Algorithms by means of Symbolic Regression and Evolutionary Algorithms, Lambert Academic Publishing Saarbrücken, 2009, ISBN: 978-3-8383-1808-0 Price K., Storn R. M., Lampinen J. A., 2005, “Differential Evolution : A Practical Approach to Global Optimization”, (Natural Computing Series), Springer; 1 edition. Price, K. and Storn, R. (2001), Differential evolution homepage, [Online]: http://www.icsi.berkeley.edu/~storn/code.html, [Accessed 29/02/2012]. Urbanek T., Prokopova Z., Silhavy R., Kuncar A.: New Approach of Constant Resolving of Analytical Programming. In 30th European Conference on Modelling and Simulation, 2016, p. 231-236. ISBN 978-0-9932440-2-5. Viktorin A., Pluhacek M., Kominkova Oplatkova Z., Senkerik R.: Analytical Programming with Extended Individuals. In 30th European Conference on Modelling and Simulation, 2016, p. 237-244. ISBN 978-0-9932440-2-5. Volna, E., Kotyrba, M., & Jarusek, R. (2013). Multi-classifier based on Elliott wave’s recognition. Computers & Mathematics with Applications, 66(2), 213-225. Zelinka et al.: Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures, in Kita E.: Evolutionary Algorithms, InTech 2011, ISBN: 978-953-307-171-8 Zelinka I., Varacha P., Oplatkova Z., Evolutionary Synthesis of Neural Network, Mendel 2006 – 12th International Conference on Softcomputing, Brno, Czech Republic, 31 May – 2 June 2006, pages 25 – 31, ISBN 80-214-3195-4 Zelinka I.,Oplatkova Z, Nolle L., 2005. Boolean Symmetry Function Synthesis by Means of Arbitrary Evolutionary Algorithms-Comparative Study, International Journal of Simulation Systems, Science and Technology, Volume 6, Number 9, August 2005, pages 44 - 56, ISSN: 1473-8031.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014) and also by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, further it was supported by Grant Agency of the Czech Republic—GACR P103/15/06700S and by Internal Grant Agency of Tomas Bata University in Zlin under the project No. IGA/CebiaTech/2017/004.
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam T.G. Masaryka 5555, Zlin, Czech Republic
utb.fulltext.projects LO1303
utb.fulltext.projects MSMT-7778/2014
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
utb.fulltext.projects P103/15/06700S
utb.fulltext.projects IGA/CebiaTech/2017/004
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam