Publikace UTB
Repozitář publikační činnosti UTB

Modelling and model predictive control of magnetic levitation laboratory plant

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Modelling and model predictive control of magnetic levitation laboratory plant en
dc.contributor.author Chalupa, Petr
dc.contributor.author Novák, Jakub
dc.contributor.author Malý, Martin
dc.relation.ispartof Proceedings - 31st European Conference on Modelling and Simulation, ECMS 2017
dc.identifier.isbn 978-0-9932440-4-9
dc.date.issued 2017
dc.citation.spage 367
dc.citation.epage 373
dc.event.title 31st European Conference on Modelling and Simulation, ECMS 2017
dc.event.location Budapest
utb.event.state-en Hungary
utb.event.state-cs Maďarsko
dc.event.sdate 2017-05-23
dc.event.edate 2017-05-26
dc.type conferenceObject
dc.language.iso en
dc.publisher European Council for Modelling and Simulation
dc.identifier.doi 10.7148/2017-0367
dc.relation.uri http://www.scs-europe.net/dlib/2017/2017-0367.htm
dc.relation.uri http://www.scs-europe.net/dlib/2017/ecms2017acceptedpapers/0367-mct_ECMS2017_0046.pdf
dc.subject State-space model en
dc.subject model predictive control en
dc.subject MATLAB en
dc.subject Simulink en
dc.subject magnetic levitation en
dc.subject CE152 model en
dc.description.abstract The paper is focused on creating a mathematical model of a magnetic levitation plant and usage of the model for a design of a predictive controller. The magnetic levitation laboratory plant CE 152 by Humusoft Company is used to determine values of model parameters and for real time control experiments. From the control point of view, the CE152 represents a nonlinear and very fast system. Both the mathematical model and the model predictive controller are created using MATLAB/Simulink environment. This environment extended by Real time toolbox is used for real time experiments with the laboratory plant. © ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors). en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007251
utb.identifier.obdid 43877439
utb.identifier.scopus 2-s2.0-85021779782
utb.identifier.wok 000404420000055
utb.source d-scopus
dc.date.accessioned 2017-09-03T21:40:06Z
dc.date.available 2017-09-03T21:40:06Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]
utb.ou CEBIA-Tech
utb.contributor.internalauthor Chalupa, Petr
utb.contributor.internalauthor Novák, Jakub
utb.contributor.internalauthor Malý, Martin
utb.fulltext.affiliation Petr Chalupa Jakub Novák Martin Malý Faculty of Applied Informatics Tomas Bata University in Zlin nam. T. G. Masaryka 5555, 760 01, Czech Republic E-mail: chalupa@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.references Bobál, V.; J. Böhm; J. Fessl and J. Macháček. 2005. Digital Self-tuning Controllers: Algorithms, Implementation and Applications. Springer - Verlag London Ltd., London. Camacho, E. and C. Bordons. 2004. Model predictive control. 2nd. ed., New York, Springer. Chalupa, P.; M. Maly and J. Novak. 2016. “Nonlinear Simulink Model Of Magnetic Levitation Laboratory Plant”, In: ECMS 2016 Proceedings, T. Claus, F. Herrmann, M. Manitz, O. Rose (Eds.), European Council for Modeling and Simulation. doi:10.7148/2016-0293. Haber, R., R. Bars and U. Schmitz. 2011. Predictive control in process engineering: From the basics to the applications. Weinheim: Wiley-VCH Kwon, W. and S. Han. 2005. Receding horizon control: model predictive control for state models. Springer, London. Ljung, L. 1999. System identification: theory for the user. Upper Saddle River, N.J.: Prentice Hall PTR. Himmelblau, D. M. and J. B. Riggs. 2004. Basic principles and calculations in chemical engineering, Upper Saddle River, N.J.: Prentice Hall. Humusoft. 1996. CE 152 Magnetic levitation model educational manual Orukpe, P. E. 2012. “Model Predictive Control Fundamentals”. Nigerian Journal of Technology (NIJOTECH). Vol. 41, No. 2, 139-148. Tan, K. C. and Y. Li. 2002. “Grey-box model identification via evolutionary computing.” Control Engineering Practice, 10, 673–684.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014).
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Czech Republic
utb.fulltext.projects LO1303
utb.fulltext.projects MSMT-7778/2014
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam