Publikace UTB
Repozitář publikační činnosti UTB

1DOF gain scheduled ph control of CSTR

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title 1DOF gain scheduled ph control of CSTR en
dc.contributor.author Krhovják, Adam
dc.contributor.author Talaš, Stanislav
dc.contributor.author Rušar, Lukáš
dc.relation.ispartof Proceedings - 31st European Conference on Modelling and Simulation, ECMS 2017
dc.identifier.isbn 978-0-9932440-4-9
dc.date.issued 2017
dc.citation.spage 391
dc.citation.epage 396
dc.event.title 31st European Conference on Modelling and Simulation, ECMS 2017
dc.event.location Budapest
utb.event.state-en Hungary
utb.event.state-cs Maďarsko
dc.event.sdate 2017-05-23
dc.event.edate 2017-05-26
dc.type conferenceObject
dc.language.iso en
dc.publisher European Council for Modelling and Simulation
dc.identifier.doi 10.7148/2017-0391
dc.relation.uri http://www.scs-europe.net/dlib/2017/2017-0391.htm
dc.relation.uri http://www.scs-europe.net/dlib/2017/ecms2017acceptedpapers/0391-mct_ECMS2017_0055.pdf
dc.subject Neutralization en
dc.subject continuously stirred tank reactor en
dc.subject nonlinear model en
dc.subject parametrized linear model en
dc.subject scheduling variable en
dc.subject gain scheduled controller en
dc.description.abstract Motivated by the rich dynamics of chemical processes, we present a gain scheduled control strategy for a pH neutralization occurring inside continuously stirred tank reactor built on a linearization of a nonlinear state equation about selected operating points. Firstly, we address the problem of a selection of scheduling variable. Based on this, an extra scheduling mechanism is presented to simulate the behavior of a nonlinear process using a linear model. Specifically, the proposed step aims at extending the region of validity of linearization by introducing a parametrized linear model, which enables to construct linear controller at each point. Finally, the parameters of resulting family of linear controllers are scheduled as functions of the reference variable, resulting in a single scheduling controller. © ECMS Zita Zoltay Paprika, Péter Horák, Kata Váradi,Péter Tamás Zwierczyk, Ágnes Vidovics-Dancs, János Péter Rádics (Editors). en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007255
utb.identifier.rivid RIV/70883521:28140/17:63517728!RIV18-MSM-28140___
utb.identifier.obdid 43877628
utb.identifier.scopus 2-s2.0-85021810313
utb.identifier.wok 000404420000059
utb.source d-scopus
dc.date.accessioned 2017-09-03T21:40:06Z
dc.date.available 2017-09-03T21:40:06Z
dc.description.sponsorship Ministry of Education of the Czech Republic under grant IGA [IGA/FAI/2017/009]
utb.contributor.internalauthor Krhovják, Adam
utb.contributor.internalauthor Talaš, Stanislav
utb.contributor.internalauthor Rušar, Lukáš
utb.fulltext.affiliation Adam Krhovják, Stanislav Talaš and Lukáš Rušar Department of Process Control Faculty of Applied Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4511, 760 05 Zlín, Czech Republic krhovjak@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.references Corriou, J.P. 2004. Process control: theory and applications, London. Springer. Hairer, E; S.P. Norsett; and G. Wanner. 1993. Solving ordinary differential equations. 2nd revised ed. Berlin: Springer. Jiang, J. 1994. “Optimal gain scheduling controllers for a diesel engine”. IEEE Control Systems Magazine, 14(4), 42-48. Kaminer, I; A. M. Paswal; P. P. Khargonekar; and E. E. Coleman. 1995. “A velocity algorithm for the implementation of gain scheduled controllers”. Automatica, 31, 1185-1191. Khalil, H. K. “Nonlinear systems”. 2002. Upper Saddle River, N.J.: Prentice Hall. Krhovják, A.; P. Dostál; S. Talaš. 2015; and L.Rušar. “Multivariale gain scheduled control of two funnel liquid tanks in series”. in Process Control (PC), 2015 20th International Conference on, pp. 60-65. Kroemer, G. and J. Pouyssegur.2008.“Tumor Cell Metabolism: Cancer's Achilles' Heel”, Cancer Cell, Volume 13, Issue 6,472-482 Kučera, V. 1993. “Diophantine equations in control – A survey”. Automatica, 29, 1361-1375. Lawrence, D. A. and W. J. Rugh. 1995. “Gain scheduling dynamic linear controllers for a nonlinear plant”. Automatica, 31, 381-390. Shamma, J.S.; M. Athans. 1990. “Analysis of gain scheduled control for nonlinear plants. (1990) IEEE Transactions on Automatic Control, 35 (8), pp. 898-907. Shamma, J.S and M. Athans. 1992. “Gain scheduling: potential hazards and possible remedies”. IEEE Control Systems Magazine, 12(3), 101-107. Shamma, J.S. and M.Athans. 1991. “Guaranteed properties of gain scheduled control of linear parameter-varying plants”. Automatica, vol. 27, no. 4, 559-564. Rugh, W.J. 1991 “Analytical framework for gain scheduling”. IEEE Control Systems Magazine, 11(1), pp. 79-84. Richardson, S.M. 1989. Fluid mechanics, New York, Hemisphere Pub. Corp.
utb.fulltext.sponsorship This article was created with support of the Ministry of Education of the Czech Republic under grant IGA reg. n. IGA/FAI/2017/009.
utb.scopus.affiliation Department of Process Control, Faculty of Applied Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4511, Zlín, Czech Republic
utb.fulltext.projects IGA/FAI/2017/009
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam