Publikace UTB
Repozitář publikační činnosti UTB

The revision and extension of the R-MS ring for time delay systems

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title The revision and extension of the R-MS ring for time delay systems en
dc.contributor.author Pekař, Libor
dc.contributor.author Prokop, Roman
dc.relation.ispartof Bulletin of the Polish Academy of Sciences-Technical Sciences
dc.identifier.issn 0239-7528 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 65
utb.relation.issue 3
dc.citation.spage 341
dc.citation.epage 349
dc.type article
dc.language.iso en
dc.publisher Polska Akademia Nauk, Polish Academia of Sciences, Division IV Technical Sciences of the Polish Academy of Sciences
dc.identifier.doi 10.1515/bpasts-2017-0038
dc.relation.uri https://www.degruyter.com/view/j/bpasts.2017.65.issue-3/bpasts-2017-0038/bpasts-2017-0038.xml
dc.subject time delay systems en
dc.subject ring en
dc.subject Bezout domain en
dc.subject coprime factorization en
dc.description.abstract This paper is aimed at reviewing the ring of retarded quasipolynomial meromorphic functions (R-MS) that was recently introduced as a convenient control design tool for linear, time-invariant time delay systems (TDS). It has been found by the authors that the original definition does not constitute a ring and has some essential deficiencies, and hence it could not be used for an algebraic control design without a thorough reformulation which i.e. extends the usability to neutral TDS and to those with distributed delays. This contribution summarizes the original definition of RMS, simply highlights its deficiencies via examples, and suggests a possible new extended definition. Hence, the new ring of quasipolynomial meromorphic functions (R-QM) is established to avoid confusion. The paper also investigates and introduces selected algebraic properties supported by some illustrative examples and concisely outlines its use in controller design. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007266
utb.identifier.obdid 43877003
utb.identifier.scopus 2-s2.0-85027503087
utb.identifier.wok 000404972400007
utb.source j-wok
dc.date.accessioned 2017-09-03T21:40:07Z
dc.date.available 2017-09-03T21:40:07Z
dc.description.sponsorship European Regional Development Fund under the project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19]
dc.rights Attribution-NonCommercial-NoDerivs 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Pekař, Libor
utb.contributor.internalauthor Prokop, Roman
utb.fulltext.affiliation L. PEKAŘ * and R. PROKOP Faculty of Applied Informatics, Tomas Bata University in Zlín, St. Nad Stráněmi 4511, 76005 Zlín, Czech Republic * e-mail: pekar@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.references [1] H. Górecki, S. Fuksa, P. Grabowski, and A. Korytowski, Analysis and Synthesis of Time Delay Systems, Wiley, New York, 1989. [2] J.K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. [3] T. Vyhlídal, J.-F. Lafay, and R. Sipahi (eds.), Delay Systems: From Theory to Numerics and Applications, Springer, New York, 2014. [4] J. Konopacki and K. Mościńska, “Estimation of filter order for prescribed, reduced group delay FIR filter design”, Bull. Pol. Ac.: Tech. 63 (1), 209–216 (2015). [5] Y. Rouchaleau, Linear, Discrete Time, Finite Dimensional Dynamical Systems over Some Classes of Commutative Rings, PhD thesis, Stanford University, 1972. [6] E.W. Kamen, “On the algebraic theory of systems defined by convolution operations”, Math. Sys. Theory 9 (1), 57–74 (1975). [7] A.S. Morse, “Ring models for delay-differential systems”, Automatica 12 (5), 529–531 (1976). [8] E.D. Sontag, “Linear systems over commutative rings: A survey”, Ricer. Autom. 7 (1), 1–34 (1976). [9] E.W. Kamen, P.P. Khargonegar, and A. Tannenbaum, “Stabilization of time delay systems using finite dimensional compensators”, IEEE Trans. Autom. Control 30 (1), 75–78 (1985). [10] E.W. Kamen, P.P. Khargonegar, and A. Tannenbaum, “Proper stable Bézout stabilization and feedback control of linear time-delay systems”, Int. J. Control 43 (3), 837–857 (1986). [11] D. Brethé and J.J. Loiseau, “An effective algorithm for finite spectrum assignment of single-input systems with delays”, Math. Comput. Simul. 45 (4–5), 339–348 (1998). [12] J.A. Hermida-Alonso, “On linear algebra over commutativerings”, in Handbook of Algebra, vol. III, pp. 3–61, ed. M. Hazewinkel, 2003. [13] R.F. Curtain and K. Morris, “Transfer functions of distributed parameters systems”, Automatica 45 (5), 1101–1116 (2009). [14] J. Klamka, A. Babiarz, and M. Niezabitowski, “Banach fixed-point theorem in semilinear controllability problems – a survey”, Bull. Pol. Ac.: Tech. 64 (1), 21–35 (2016). [15] C.A. Desoer, R.W. Liu, J. Murray, and R. Seaks, “Feedback system design: The fractional representation approach to analysis and synthesis”, IEEE Trans. Autom. Control 25 (3), 399–412 (1980). [16] M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press, Cambridge, MA, 1985. [17] V. Kučera, “Diophantine equations in control – a survey”, Automatica 29 (6), 1361–1375 (1993). [18] C. Foias, H. Özbay, and A. Tannenbaum, Robust Control of Infinite Dimensional Systems: Frequency Domain Methods, Springer Verlag, Berlin, 1996. [19] M.C. Smith, “On stabilization and the existence of coprime factorization”, IEEE Trans. Autom. Control 34 (9), 1005–1007 (1989). [20] R. Prokop and J.P. Corriou, “Design and analysis of simple robust controllers”, Int. J. Control 66 (6), 905–921 (1997). [21] P. Zítek and V. Kučera, “Algebraic design of anisochronic controllers for time delay systems”, Int. J. Control 76 (16), 1654–1665 (2003). [22] P. Zítek, V. Kučera, and T. Vyhlídal, “Meromorphic stabilization and control of time delay systems”, Proc. 16th IFAC World Congress, IFAC, Prague, 638–638 (2005). [23] F.M. Callier and C.A. Desoer, “Simplifications and clarifications on the paper ‘An algebra of transfer functions for distributed linear time-invariant systems’ “, IEEE Trans. Circ. Syst. 27 (4), 320–323 (1980). [24] M.V. Carriegos, A. Defrancisco-Iribarren, and R. Samtamaria-Sanchez, “The effective calculation of all assignable polynomials to a single-input system over a Bézout domain”, IEEE Trans. Autom. Control 55 (1), 222–225 (2010). [25] J.-L. Hong, “H∞ control for multiple state-delayed systems: A coprime factorization approach”, J. Chinese Inst. Eng. 29 (2), 201–210 (2006). [26] J.R. Partington and C. Bonnet, “H∞ and BIBO stabilization of delay systems of neutral type”, Syst. Control Lett. 52 (3–4), 283–288 (2004). [27] C. Bonnet, A.R. Fioravanti, and J.R. Partington, “Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis”, SIAM J. Control Optim. 49 (2), 498–516 (2011). [28] R. Prokop, J. Korbel, and L. Pekař, “Delay systems with meromorphic functions design”, 12th IEEE Int. Conf. on Control & Automation, IEEE Computer Society, Kathmandu, Nepal, 443–448 (2016). [29] L. Pekař and R. Prokop, “Algebraic robust control of a closed circuit heating-cooling system with a heat exchanger and internal loop delays”, Appl. Therm. Eng. 113, 1464–1474 (2017). [30] L. Pekař, “A ring for description and control of time-delay systems”, WSEAS Trans. Syst. 11 (10), 571–585 (2012). [31] J.J. Loiseau, M. Cardelli, and X. Dusser, “Neutral-type time-delay systems that are not formally stable are not BIBO stabilizable”, IMA J. Math. Control Inf. 19, 217–227 (2002). [32] T. Vyhlídal and P. Zítek, “QPmR – Quasi-Polynomial Root-Finder: Algorithm update and examples”, in Delay Systems: From Theory to Numerics and Applications, pp. 299–312, eds. T. Vyhlídal, J.-F. Lafay, and R. Sipahi, Springer, New York, 2014. [33] J. Carrel, A Group Theoretic Approach to Abstract Linear Algebra, Springer, New York, 2016.
utb.fulltext.sponsorship -
utb.wos.affiliation [Pekar, L.; Prokop, R.] Tomas Bata Univ Zlin, Fac Appl Informat, St Stranemi 4511, Zlin 76005, Czech Republic
utb.fulltext.projects -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 4.0 International