Publikace UTB
Repozitář publikační činnosti UTB

Properties of the only thorium fullerene, Th@C84, uncovered

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Properties of the only thorium fullerene, Th@C84, uncovered en
dc.contributor.author Kaminský, Jakub
dc.contributor.author Vícha, Jan
dc.contributor.author Bouř, Petr
dc.contributor.author Straka, Michal
dc.relation.ispartof Journal of Physical Chemistry A
dc.identifier.issn 1089-5639 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 121
utb.relation.issue 16
dc.citation.spage 3128
dc.citation.epage 3135
dc.type article
dc.language.iso en
dc.publisher American Chemical Society (ACS)
dc.identifier.doi 10.1021/acs.jpca.7b00346
dc.relation.uri http://pubs.acs.org/doi/abs/10.1021/acs.jpca.7b00346
dc.description.abstract Only a single thorium fullerene, Th@C-84, has been reported to date (Akiyama, K.; et al. J. Nucl. Radiochem. Sci. 2002, 3, 151-154). Although the system was characterized by UV-vis and XANES (X-ray absorption near edge structure) spectra, its structure and properties remain unknown. In this work we used the density functional calculations to identify molecular and electronic structure of the Th@C-84. Series of molecular structures satisfying the ThC84 stoichiometric formula were studied comprising 24 IPR and 110 non-IPR Th@C-84 isomers as well as 9 ThC2@C-82 IPR isomers. The lowest energy structure is Th@C-84-C-s(10) with the singlet ground state. Its predicted electronic absorption spectra are in agreement with the experimentally observed ones. The bonding between the cage and Th was characterized as polar covalent with Th in formal oxidation state IV. The NMR chemical shifts of Th@C-84-C-s(10) were predicted to guide the future experimental efforts in identification of this compound. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007399
utb.identifier.obdid 43876645
utb.identifier.scopus 2-s2.0-85020170884
utb.identifier.wok 000400534300014
utb.identifier.pubmed 28375617
utb.identifier.coden JPCAF
utb.source j-wok
dc.date.accessioned 2017-09-08T12:14:51Z
dc.date.available 2017-09-08T12:14:51Z
dc.description.sponsorship Czech Science Foundation [17-07091S, 16-05935S]; Program NPU I [LO1504]; CESNET [LM2015042]; CERIT Scientific Cloud under program "Projects of Large Research, Development, and Innovations Infrastructures" [LM2015085]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Vícha, Jan
utb.fulltext.affiliation Jakub Kaminský,*,† Jan Vícha,‡ Petr Bouř,† and Michal Straka*,† † Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo naměstí 2, 166 10 Prague, Czech Republic ‡ Center of Polymer Systems, University Institute, Tomáš Baťa University in Zlín, Trída T. Bati, 5678, CZ-76001, Zlín, Czech Republic Corresponding Authors *E-mail: kaminsky@uochb.cas.cz. Phone: (+420) 220 183 348. (J.K.) *E-mail: straka@uochb.cas.cz. (M.S.) ORCID Jakub Kaminský: 0000-0001-6347-3022 Jan Vícha: 0000-0003-3698-8236
utb.fulltext.dates -
utb.fulltext.references 1. Popov, A. A.; Yang, S.; Dunsch, L. Endohedral Fullerenes Chem. Rev. 2013, 113, 5989-6113 DOI: 10.1021/cr300297r 2. Lu, X.; Bao, L.; Akasaka, T.; Nagase, S. Recent Progress in the Chemistry of Endohedral Metallofullerenes Chem. Commun. 2014, 50, 14701-14715 DOI: 10.1039/C4CC05164E 3. Cong, H. L.; Yu, B.; Akasaka, T.; Lu, X. Endohedral Metallofullerenes: An Unconventional Core-Shell Coordination Union Coord. Chem. Rev. 2013, 257, 2880-2898 DOI: 10.1016/j.ccr.2013.05.020 4. Rivera-Nazario, D. M.; Pinzon, J. R.; Stevenson, S.; Echegoyen, L. A. Buckyball Maracas: Exploring the inside and Outside Properties of Endohedral Fullerenes J. Phys. Org. Chem. 2013, 26, 194-205 DOI: 10.1002/poc.3009 5. Jin, P.; Tang, C.; Chen, Z. Carbon Atoms Trapped in Cages: Metal Carbide Clusterfullerenes Coord. Chem. Rev. 2014, 270, 89-111 DOI: 10.1016/j.ccr.2013.10.020 6. Wang, T.; Wang, C. Endohedral Metallofullerenes Based on Spherical Ih-C80 Cage: Molecular Structures and Paramagnetic Properties Acc. Chem. Res. 2014, 47, 450-458 DOI: 10.1021/ar400156z 7. Garcia-Borras, M.; Osuna, S.; Luis, J. M.; Swart, M.; Sola, M. The Role of Aromaticity in Determining the Molecular Structure and Reactivity of (Endohedral Metallo)Fullerenes Chem. Soc. Rev. 2014, 43, 5089-5105 DOI: 10.1039/c4cs00040d 8. Akiyama, K. Study of Metallofullerenes Encapsulating Actinides J. Nucl. Rad. Sci. 2002, 3, 151-154 DOI: 10.14494/jnrs2000.3.151 9. Guo, T.; Diener, M. D.; Chai, Y.; Alford, M. J.; Haufler, R. E.; McClure, S. M.; Ohno, T.; Weaver, J. H.; Scuseria, G. E.; Smalley, R. E. Uranium Stabilization of C28: A Tetravalent Fullerene Science 1992, 257, 1661-1664 DOI: 10.1126/science.257.5077.1661 10. Diener, M. D.; Smith, C. A.; Veirs, D. K. Anaerobic Preparation and Solvent-Free Separation of Uranium Endohedral Metallofullerenes Chem. Mater. 1997, 9, 1773-1777 DOI: 10.1021/cm960540o 11. Akiyama, K.; Saito, S.; Ando, T.; Iwasa, Y.; Kikuchi, K.; Kobayashi, M.; Saito, Y. Characterization of Actinide Metallofullerenes AIP Conf. Proc. 2001, 590, 437-440 DOI: 10.1063/1.1420146 12. Akiyama, K. Isolation and Characterization of Light Actinide Metallofullerenes J. Am. Chem. Soc. 2001, 123, 181-182 DOI: 10.1021/ja005618n 13. Akiyama, K.; Sueki, K.; Haba, H.; Tsukada, K.; Asai, M.; Yaita, T.; Nagame, Y.; Kikuchi, K.; Katada, M.; Nakahara, H. Production and Characterization of Actinide Metallofullerenes J. Radioanal. Nucl. Chem. 2003, 255, 155-158 DOI: 10.1023/A:1022204503720 14. Dunk, P. W.; Kaiser, N. K.; Mulet-Gas, M.; Rodriguez-Fortea, A.; Poblet, J. M.; Shinohara, H.; Hendrickson, C. L.; Marshall, A. G.; Kroto, H. W. The Smallest Stable Fullerene, M@C28 (M = Ti, Zr, U): Stabilization and Growth from Carbon Vapor J. Am. Chem. Soc. 2012, 134, 9380-9389 DOI: 10.1021/ja302398h 15. Dunk, P. W.; Mulet-Gas, M.; Nakanishi, Y.; Kaiser, N. K.; Rodriguez-Fortea, A.; Shinohara, H.; Poblet, J. M.; Marshall, A. G.; Kroto, H. W. Bottom-up Formation of Endohedral Mono-Metallofullerenes Is Directed by Charge Transfer Nat. Commun. 2014, 5, 5844 DOI: 10.1038/ncomms6844 16. Echegoyen, L.; Buck, D. New Endohedral Fullerenes Containing Uranium. In 227th ECS Meeting, Chicago, IL, 2015, abstract 817. 17. Fowler, P. W.; Austin, S. J.; Sandall, J. P. B. The Tetravalence of C28 J. Chem. Soc., Perkin Trans. 2 1993, 795-797 DOI: 10.1039/p29930000795 18. Aihara, J.; Hosoya, H. Aromaticity of Multiply-Charged Fullerene Ions Bull. Chem. Soc. Jpn. 1993, 66, 1955-1958 DOI: 10.1246/bcsj.66.1955 19. Jackson, K.; Kaxiras, E.; Pederson, M. R. Electronic States of Group-IV Endohedral Atoms in C28 Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 48, 17556-17561 DOI: 10.1103/PhysRevB.48.17556 20. Pitzer, R. M.; Zhao, K. Electronic Structure of C28, Pa@C28, and U@C28 J. Phys. Chem. 1996, 100, 4798-4802 DOI: 10.1021/jp9525649 21. Dognon, J.-P.; Clavaguera, C.; Pyykko, P. A Predicted Organometallic Series Following a 32-Electron Principle: An@C28 (an = Th, Pa+, U2+, Pu4+) J. Am. Chem. Soc. 2009, 131, 238-243 DOI: 10.1021/ja806811p 22. Ryzhkov, M. V.; Ivanovskii, A. L.; Delley, B. Electronic Structure of Endohedral Fullerenes An@C28 (An = Th - Md) Comput. Theor. Chem. 2012, 985, 46-52 DOI: 10.1016/j.comptc.2012.01.037 23. Manna, D.; Ghanty, T. K. Prediction of a New Series of Thermodynamically Stable Actinide Encapsulated Fullerene Systems Fulfilling the 32-Electron Principle J. Phys. Chem. C 2012, 116, 25630-25641 DOI: 10.1021/jp308820z 24. Ryzhkov, M. V.; Delley, B. Electronic Structure of Predicted Endohedral Fullerenes An@C40 (an = Th–Md) Comput. Theor. Chem. 2013, 1013, 70-77 DOI: 10.1016/j.comptc.2013.03.009 25. Manna, D.; Ghanty, T. K. Enhancement in the Stability of 36-Atom Fullerene through Encapsulation of a Uranium Atom J. Phys. Chem. C 2013, 117, 17859-17869 DOI: 10.1021/jp406350w 26. Manna, D.; Sirohiwal, A.; Ghanty, T. K. Pu@C24: A New Example Satisfying the 32-Electron Principle J. Phys. Chem. C 2014, 118, 7211-7221 DOI: 10.1021/jp500453v 27. Liu, X.; Li, L.; Liu, B.; Wang, D.; Zhao, Y.; Gao, X. Theoretical Study on the Ground State Structure of Uranofullerene U@C82 J. Phys. Chem. A 2012, 116, 11651-5 DOI: 10.1021/jp306481e 28. Wu, X.; Lu, X. Dimetalloendofullerene U2@C60 Has a U-U Multiple Bond Consisting of Sixfold One-Electron-Two-Center Bonds J. Am. Chem. Soc. 2007, 129, 2171-2177 DOI: 10.1021/ja067281g 29. Infante, I.; Gagliardi, L.; Scuseria, G. E. Is Fullerene C60 Large Enough to Host a Multiply Bonded Dimetal? J. Am. Chem. Soc. 2008, 130, 7459-7465 DOI: 10.1021/ja800847j 30. Dai, X.; Meng, Y.; Xin, M.; Wang, F.; Fei, D.; Jin, M.; Wang, Z.; Zhang, R. Energetics and Electronic Properties of a Neutral Diuranium Molecule Encapsulated in C90 Fullerene Procedia Chem. 2012, 7, 528-533 DOI: 10.1016/j.proche.2012.10.080 31. Dai, X.; Han, J.; Gao, Y.; Wang, Z. G. De Novo Design of an Endohedral Heteronuclear Dimetallofullerene (U-Gd)@C60 with Exceptional Structural and Electronic Properties ChemPhysChem 2014, 15, 3871-3876 DOI: 10.1002/cphc.201402316 32. Han, J.; Dai, X.; Gao, Y.; Meng, Y.; Wang, Z. Defect-Induced Strong Localization of Uranium Dicarbide on the Graphene Surface Phys. Chem. Chem. Phys. 2014, 16, 22784-22790 DOI: 10.1039/C4CP02240H 33. Foroutan-Nejad, C.; Vícha, J.; Marek, R.; Patzschke, M.; Straka, M. Unwilling U-U Bonding in U2@C80: Cage-Driven Metal-Metal Bonds in Di-Uranium Fullerenes Phys. Chem. Chem. Phys. 2015, 17, 24182-24192 DOI: 10.1039/C5CP04280A 34. Gao, Y.; Wang, B.; Lei, Y.; Teo, B. K.; Wang, Z. Actinide-Embedded Gold Superatom Models: Electronic Structure, Spectroscopic Properties, and Applications in Surface-Enhanced Raman Scattering Nano Res. 2016, 9, 622-632 DOI: 10.1007/s12274-015-0942-4 35. Jiang, W.; Wang, Z. First-Principles Calculations of Magnetism in Nanoscale Carbon Materials Confining Metal with F Valence Electrons J. Cluster Sci. 2016, 27, 845-860 DOI: 10.1007/s10876-015-0956-9 36. Langeslay, R. R.; Fieser, M. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Synthesis, Structure, and Reactivity of Crystalline Molecular Complexes of the {[C5H3(SiMe3)2]3Th}(1-) Anion Containing Thorium in the Formal + 2 Oxidation State Chem. Sci. 2015, 6, 517-521 DOI: 10.1039/C4SC03033H 37. Turbomole V6.3 2011, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe Gmbhe 2007, 1989–2007. 38. Frisch, M. J.; Gaussian 09, revision D.01; Wallingford, CT, 2009. 39. Štěpánek, P.; Bouř, P.; Straka, M. Assignment of the He@C84 Isomers in Experimental NMR Spectra Using Density Functional Calculations Chem. Phys. Lett. 2010, 500, 54-58 DOI: 10.1016/j.cplett.2010.09.061 40. Schwerdtfeger, P.; Wirz, L.; Avery, J. Program Fullerene: A Software Package for Constructing and Analyzing Structures of Regular Fullerenes J. Comput. Chem. 2013, 34, 1508-1526 DOI: 10.1002/jcc.23278 41. Schwerdtfeger, P.; Wirz, L. N.; Avery, J. The Topology of Fullerenes WIRE:Comp. Mol. Sci. 2015, 5, 96-145 DOI: 10.1002/wcms.1207 42. Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The Pbe0Model J. Chem. Phys. 1999, 110, 6158-6170 DOI: 10.1063/1.478522 43. Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571 DOI: 10.1063/1.463096 44. Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy Phys. Chem. Chem. Phys. 2005, 7, 3297-3305 DOI: 10.1039/b508541a 45. Cao, X.; Dolg, M. J. Mol. Struct.: THEOCHEM 2004, 673, 203-209 DOI: 10.1016/j.theochem.2003.12.015 46. Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098-3100 DOI: 10.1103/PhysRevA.38.3098 47. Perdew, J. P. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 8822 DOI: 10.1103/PhysRevB.33.8822 48. Sun, G.; Kertesz, M. Isomer Identification for Fullerene C84 by 13C NMR Spectrum. A Density-Functional Theory Study J. Phys. Chem. A 2001, 105, 5212-5220 DOI: 10.1021/jp0108418 49. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint Chem. Rev. 1988, 88, 899-926 DOI: 10.1021/cr00088a005 50. Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis J. Chem. Phys. 1985, 83, 735-46 DOI: 10.1063/1.449486 51. Humphrey, W.; Dalke, A.; Schulten, K. Vmd: Visual Molecular Dynamics J. Mol. Graphics 1996, 14, 33-38 DOI: 10.1016/0263-7855(96)00018-5 52. Bader, R. W. F. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U.K., 1990. 53. Keith, T. A. AIMall, version 13.05.06. http://aim.tkgristmill.com/. 54. Fahleson, T.; Kauczor, J.; Norman, P.; Coriani, S. The Magnetic Circular Dichroism Spectrum of the C-60 Fullerene Mol. Phys. 2013, 111, 1401-1404 DOI: 10.1080/00268976.2013.779394 55. Štepánek, P.; Straka, M.; Andrushchenko, V.; Bouř, P. Communication: Fullerene Resolution by the Magnetic Circular Dichroism J. Chem. Phys. 2013, 138, 151103 DOI: 10.1063/1.4802763 56. Štěpánek, P.; Bouř, P. Computation of Magnetic Circular Dichroism by Sum over States Summations J. Comput. Chem. 2013, 34, 1531-1539 DOI: 10.1002/jcc.23277 57. Straka, M.; Štěpánek, P.; Coriani, S.; Vaara, J. Nuclear Spin Circular Dichroism in Fullerenes: A Computational Study Chem. Commun. 2014, 50, 15228-15231 DOI: 10.1039/C4CC07271E 58. Štěpánek, P.; Straka, M.; Šebestík, J.; Bouř, P. Magnetic Circular Dichroism of Chlorofullerenes: Experimental and Computational Study Chem. Phys. Lett. 2016, 647, 117-121 DOI: 10.1016/j.cplett.2016.01.047 59. Kupka, T.; Stachów, M.; Chełmecka, E.; Pasterny, K.; Stobińska, M.; Stobiński, L.; Kaminský, J. Efficient Modeling of NMR Parameters in Carbon Nanosystems J. Chem. Theory Comput. 2013, 9, 4275-4286 DOI: 10.1021/ct4002812 60. Kupka, T.; Nieradka, M.; Kaminský, J.; Stobiński, L. Modeling 21Ne NMR Parameters for Carbon Nanosystems Magn. Reson. Chem. 2013, 51, 676-681 DOI: 10.1002/mrc.3999 61. Kupka, T.; Stachów, M.; Stobinski, L.; Kaminský, J. 3He NMR: From Free Gas to Its Encapsulation in Fullerene Magn. Reson. Chem. 2013, 51, 463-468 DOI: 10.1002/mrc.3972 62. Jankowska, M.; Kupka, T.; Stobiński, L.; Kaminský, J. DFT Studies on Armchair (5, 5) SWCNT Functionalization. Modification of Selected Structural and Spectroscopic Parameters Upon Two-Atom Molecule Attachment J. Mol. Graphics Modell. 2015, 55, 105-114 DOI: 10.1016/j.jmgm.2014.11.006 63. Kupka, T.; Stachów, M.; Stobinski, L.; Kaminský, J. DFT Study of Zigzag (N, 0) Single-Walled Carbon Nanotubes: 13C NMR Chemical Shifts J. Mol. Graphics Modell. 2016, 67, 14-19 DOI: 10.1016/j.jmgm.2016.04.008 64. Kupka, T.; Stachów, M.; Stobinski, L.; Kaminský, J. Calculation of Raman Parameters of Real-Size Zigzag (N, 0) Single-Walled Carbon Nanotubes Using Finite-Size Models Phys. Chem. Chem. Phys. 2016, 18, 25058-25069 DOI: 10.1039/C6CP04100K 65. Baerends, E. J.; ADF2014, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2014. http://www.scm.com/. 66. Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Towards an Order-N DFT Method Theor. Chem. Acc. 1998, 99, 391 DOI: 10.1007/s002140050353 67. te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.; Fonseca Guerra, C.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. Chemistry with ADF J. Comput. Chem. 2001, 22, 931 DOI: 10.1002/jcc.1056 68. van Lenthe, E.; Snijders, J. G.; Baerends, E. J. The Zero-Order Regular Approximation for Relativistic Effects: The Effect of Spin-Orbit Coupling in Closed Shell Molecules J. Chem. Phys. 1996, 105, 6505-6516 DOI: 10.1063/1.472460 69. van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic Total-Energy Using Regular Approximations J. Chem. Phys. 1994, 101, 9783-9792 DOI: 10.1063/1.467943 70. van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic Regular 2-Component Hamiltonians J. Chem. Phys. 1993, 99, 4597-4610 DOI: 10.1063/1.466059 71. Vícha, J.; Marek, R.; Straka, M. High-Frequency 13C and 29Si NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of Tl(I) and Pb(II): Decisive Role of Relativistic Effects Inorg. Chem. 2016, 55, 1770-1781 DOI: 10.1021/acs.inorgchem.5b02689 72. Vícha, J.; Foroutan-Nejad, C.; Pawlak, T.; Munzarova, M. L.; Straka, M.; Marek, R. Understanding the Electronic Factors Responsible for Ligand Spin-Orbit NMR Shielding in Transition-Metal Complexes J. Chem. Theory Comput. 2015, 11, 1509-1517 DOI: 10.1021/ct501089z 73. Vícha, J.; Patzschke, M.; Marek, R. A Relativistic DFT Methodology for Calculating the Structures and NMR Chemical Shifts of Octahedral Platinum and Iridium Complexes Phys. Chem. Chem. Phys. 2013, 15, 7740-7754 DOI: 10.1039/c3cp44440f 74. Hrobárik, P.; Hrobáriková, V.; Greif, A. H.; Kaupp, M. Giant Spin-Orbit Effects on NMR Shifts in Diamagnetic Actinide Complexes: Guiding the Search of Uranium(VI) Hydride Complexes in the Correct Spectral Range Angew. Chem., Int. Ed. 2012, 51, 10884-10888 DOI: 10.1002/anie.201204634 75. Greif, A. H.; Hrobárik, P.; Autschbach, J.; Kaupp, M. Giant Spin-Orbit Effects on 1H and 13C NMR Shifts for Uranium(VI) Complexes Revisited: Role of the Exchange-Correlation Response Kernel, Bonding Analyses, and New Predictions Phys. Chem. Chem. Phys. 2016, 18, 30462-30474 DOI: 10.1039/C6CP06129J 76. Vícha, J.; Novotný, J.; Straka, M.; Repisky, M.; Ruud, K.; Komorovsky, S.; Marek, R. Structure, Solvent, and Relativistic Effects on the NMR Chemical Shifts in Square-Planar Transition-Metal Complexes: Assessment of DFT Approaches Phys. Chem. Chem. Phys. 2015, 17, 24944-24955 DOI: 10.1039/C5CP04214C 77. van Lenthe, E.; Baerends, E. J. Optimized Slater-Type Basis Sets for the Elements 1–118 J. Comput. Chem. 2003, 24, 1142-1156 DOI: 10.1002/jcc.10255 78. Chong, P. C.; van Lenthe, E.; van Gisbergen, S. J. A.; Baerends, E. J. Even-Tempered Slater-Type Orbitals Revisited: From Hydrogen to Krypton J. Comput. Chem. 2004, 25, 1030-1036 DOI: 10.1002/jcc.20030 79. Kaminský, J.; Budĕs̆inský, M.; Taubert, S.; Bouř, P.; Straka, M. Fullerene C-70 Characterization by C-13 NMR and the Importance of the Solvent and Dynamics in Spectral Simulations Phys. Chem. Chem. Phys. 2013, 15, 9223-9230 DOI: 10.1039/c3cp50657f 80. Avent, A. G.; Dubois, D.; Penicaud, A.; Taylor, R. The Minor Isomers and IR Spectrum of [84]fullerene J. Chem. Soc., Perkin Trans. 2 1997, 2, 1907 DOI: 10.1039/a703697c 81. Fowler, P. W.; Manolopoulos, D. E. An Atlas of Fullerenes; Oxford University Press: Oxford, U.K., 1995. 82. Fuhrer, T. J.; Lambert, A. M. Isolated Pentagon Rule Violating Endohedral Metallofullerenes Explained Using the Huckel Rule: A Statistical Mechanical Study of the C84 Isomeric Set J. Comput. Chem. 2015, 36, 146-50 DOI: 10.1002/jcc.23774 83. Taubert, S.; Straka, M.; Pennanen, T. O.; Sundholm, D.; Vaara, J. Dynamics and Magnetic Resonance Properties of Sc3C2@C80 and Its Monoanion Phys. Chem. Chem. Phys. 2008, 10, 7158-7168 DOI: 10.1039/b811032h 84. Yamada, M.; Slanina, Z.; Mizorogi, N.; Muranaka, A.; Maeda, Y.; Nagase, S.; Akasaka, T.; Kobayashi, N. Application of MCD Spectroscopy and TD-DFT to Endohedral Metallofullerenes for Characterization of Their Electronic Transitions Phys. Chem. Chem. Phys. 2013, 15, 3593-3601 DOI: 10.1039/c3cp44096f 85. Vícha, J.; Foroutan-Nejad, C.; Pawlak, T.; Munzarová, M. L.; Straka, M.; Marek, R. Understanding the Electronic Factors Responsible for Ligand Spin-Orbit NMR Shielding in Transition-Metal Complexes J. Chem. Theory Comput. 2015, 11, 1509-1517 DOI: 10.1021/ct501089z 86. Vícha, J.; Straka, M.; Munzarová, M. L.; Marek, R. Mechanism of Spin-Orbit Effects on the Ligand NMR Chemical Shift in Transition-Metal Complexes: Linking NMR to EPR J. Chem. Theory Comput. 2014, 10, 1489-1499 DOI: 10.1021/ct400726y 87. Standara, S.; Kulhánek, P.; Marek, R.; Straka, M. 129Xe NMR Chemical Shift in Xe@C60 Calculated at Experimental Conditions: Essential Role of the Relativity, Dynamics, and Explicit Solvent J. Comput. Chem. 2013, 34, 1890-1898 DOI: 10.1002/jcc.23334 88. Hyvärinen, M.; Vaara, J.; Goldammer, A.; Kutzky, B.; Hegetschweiler, K.; Kaupp, M.; Straka, M. Characteristic Spin-Orbit Induced H-1(CH2) Chemical Shifts Upon Deprotonation of Group 9 Polyamine Aqua and Alcohol Complexes J. Am. Chem. Soc. 2009, 131, 11909-11918 DOI: 10.1021/ja903637m 89. Straka, M.; Lantto, P.; Vaara, J. Toward Calculations of the 129Xe Chemical Shift in Xe@C60 at Experimental Conditions: Relativity, Correlation, and Dynamics J. Phys. Chem. A 2008, 112, 2658–2668 DOI: 10.1021/jp711674y
utb.fulltext.sponsorship We thank Kazuhiko Akiyama for the experimental UV−vis spectra of Th@C84. Cina Foroutan-Nejad is acknowledged for the help with QTAIM calculations and James Avery for the help with the Fullerene program. The work was supported by the Czech Science Foundation (17-07091S to M.S. and 16-05935S to P.B.) and Program NPU I (LO1504 to J.V.). Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the program “Projects of Large Research, Development, and Innovations Infrastructures”.
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam