Publikace UTB
Repozitář publikační činnosti UTB

Breathing analysis using thermal and depth imaging camera video records

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Breathing analysis using thermal and depth imaging camera video records en
dc.contributor.author Procházka, Aleš
dc.contributor.author Charvátová, Hana
dc.contributor.author Vyšata, Oldřich
dc.contributor.author Kopal, Jakub
dc.contributor.author Chambers, Jonathon
dc.relation.ispartof Sensors (Switzerland)
dc.identifier.issn 1424-8220 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 17
utb.relation.issue 6
dc.type article
dc.language.iso en
dc.publisher Molecular Diversity Preservation International (MDPI)
dc.identifier.doi 10.3390/s17061408
dc.relation.uri http://www.mdpi.com/1424-8220/17/6/1408/htm
dc.subject thermography en
dc.subject machine learning en
dc.subject facial temperature distribution en
dc.subject depth sensors en
dc.subject multimodal signals en
dc.subject breathing disorders detection en
dc.description.abstract The paper is devoted to the study of facial region temperature changes using a simple thermal imaging camera and to the comparison of their time evolution with the pectoral area motion recorded by the MS Kinect depth sensor. The goal of this research is to propose the use of video records as alternative diagnostics of breathing disorders allowing their analysis in the home environment as well. The methods proposed include (i) specific image processing algorithms for detecting facial parts with periodic temperature changes; (ii) computational intelligence tools for analysing the associated videosequences; and (iii) digital filters and spectral estimation tools for processing the depth matrices. Machine learning applied to thermal imaging camera calibration allowed the recognition of its digital information with an accuracy close to 100% for the classification of individual temperature values. The proposed detection of breathing features was used for monitoring of physical activities by the home exercise bike. The results include a decrease of breathing temperature and its frequency after a load, with mean values −0.16°C/min and −0.72 bpm respectively, for the given set of experiments. The proposed methods verify that thermal and depth cameras can be used as additional tools for multimodal detection of breathing patterns. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007420
utb.identifier.obdid 43876804
utb.identifier.scopus 2-s2.0-85020920353
utb.identifier.wok 000404553900224
utb.source j-scopus
dc.date.accessioned 2017-09-08T12:14:54Z
dc.date.available 2017-09-08T12:14:54Z
dc.description.sponsorship Department of Neurology, University of Pittsburgh
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Charvátová, Hana
utb.fulltext.affiliation Aleš Procházka 1*, Hana Charvátová 2, Oldřich Vyšata 1,3,4, Jakub Kopal 1, Jonathon Chambers 5 1 Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Prague, Czech Republic; Vysatao@gmail.com (O.V.); Jakub.Kopal@vscht.cz (J.K.) 2 Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 05 Zlín, Czech Republic; hcharvatova@email.cz 3 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 166 36 Prague, Czech Republic 4 Faculty of Medicine in Hradec Králové, Department of Neurology, Charles University, 500 05 Hradec Kralove, Czech Republic 5 School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; Jonathon.Chambers@newcastle.ac.uk * Correspondence: A.Prochazka@ieee.org; Tel.: +420-220-444-198
utb.fulltext.dates Received: 8 April 2017 Accepted: 13 June 2017 Published: 16 June 2017
utb.scopus.affiliation Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, Prague, Czech Republic; Faculty of Applied Informatics, Tomas Bata University in Zlín, Zlín, Czech Republic; Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic; Faculty of Medicine in Hradec Králové, Department of Neurology, Charles University, Hradec Kralove, Czech Republic; School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
utb.fulltext.faculty Faculty of Applied Informatics
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International