Kontaktujte nás | Jazyk: čeština English
dc.title | Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties | en |
dc.contributor.author | Yadav, Raghvendra Singh | |
dc.contributor.author | Kuřitka, Ivo | |
dc.contributor.author | Vilčáková, Jarmila | |
dc.contributor.author | Havlica, Jaromír | |
dc.contributor.author | Kalina, Lukáš | |
dc.contributor.author | Urbánek, Pavel | |
dc.contributor.author | Machovský, Michal | |
dc.contributor.author | Škoda, David | |
dc.contributor.author | Masař, Milan | |
dc.contributor.author | Holek, Martin | |
dc.relation.ispartof | Ultrasonics Sonochemistry | |
dc.identifier.issn | 1350-4177 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2018 | |
utb.relation.volume | 40 | |
dc.citation.spage | 773 | |
dc.citation.epage | 783 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.identifier.doi | 10.1016/j.ultsonch.2017.08.024 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S1350417717303784 | |
dc.subject | Cavitation | en |
dc.subject | Dielectric property | en |
dc.subject | Impedance and modulus spectroscopy | en |
dc.subject | Magnetic property | en |
dc.subject | Nanoparticles | en |
dc.subject | Sonochemical synthesis | en |
dc.description.abstract | In this work, a facile and green method for gadolinium doped cobalt ferrite (CoFe2−xGdxO4; x = 0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles by using ultrasonic irradiation was reported. The impact of Gd3+ substitution on the structural, magnetic, dielectric and electrical properties of cobalt ferrite nanoparticles was evaluated. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). X-ray diffraction (XRD) study confirmed the formation of single phase spinel ferrite of CoFe2−xGdxO4 nanoparticles. XRD results also revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase gadolinium doped cobalt ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the impact of Gd3+ substitution in CoFe2O4 nanoparticles on cation distribution at the tetrahedral and octahedral site in spinel ferrite crystal system. The electrical properties showed that the Gd3+ doped cobalt ferrite (CoFe2−xGdxO4; x = 0.20) exhibit enhanced dielectric constant (277 at 100 Hz) and ac conductivity (20.2 × 10−9 S/cm at 100 Hz). The modulus spectroscopy demonstrated the impact of Gd3+ substitution in cobalt ferrite nanoparticles on grain boundary relaxation time, capacitance and resistance. Magnetic property measurement revealed that the coercivity decreases with Gd3+ substitution from 234.32 Oe (x = 0.00) to 12.60 Oe (x = 0.05) and further increases from 12.60 Oe (x = 0.05) to 68.62 Oe (x = 0.20). Moreover, saturation magnetization decreases with Gd3+ substitution from 40.19 emu/g (x = 0.00) to 21.58 emu/g (x = 0.20). This work demonstrates that the grain size and cation distribution in Gd3+ doped cobalt ferrite nanoparticles synthesized by sonochemical method, is effective in controlling the structural, magnetic, and electrical properties, and can be find very promising applications. © 2017 Elsevier B.V. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007453 | |
utb.identifier.obdid | 43877378 | |
utb.identifier.scopus | 2-s2.0-85028454046 | |
utb.identifier.wok | 000412959700087 | |
utb.identifier.pubmed | 28946484 | |
utb.identifier.coden | ULSOE | |
utb.source | j-scopus | |
dc.date.accessioned | 2017-09-14T09:00:45Z | |
dc.date.available | 2017-09-14T09:00:45Z | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I [LO1504] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Yadav, Raghvendra Singh | |
utb.contributor.internalauthor | Kuřitka, Ivo | |
utb.contributor.internalauthor | Vilčáková, Jarmila | |
utb.contributor.internalauthor | Urbánek, Pavel | |
utb.contributor.internalauthor | Machovský, Michal | |
utb.contributor.internalauthor | Škoda, David | |
utb.contributor.internalauthor | Masař, Milan | |
utb.contributor.internalauthor | Holek, Martin | |
utb.fulltext.affiliation | Raghvendra Singh Yadava,⁎, Ivo Kuřitkaa, Jarmila Vilcakovaa, Jaromir Havlicab, Lukas Kalinab, Pavel Urbáneka, Michal Machovskya, David Skodaa, Milan Masařa, Martin Holeka a Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic B Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic ⁎ Corresponding author. E-mail addresses: raghvendra.nac@gmail.com, yadav@utb.cz (R.S. Yadav). | |
utb.fulltext.dates | Received 25 July 2017; Received in revised form 22 August 2017; Accepted 23 August 2017; Available online 24 August 2017 | |
utb.fulltext.references | nanoparticles synthesized by starch-assisted sol-gel auto-combustion method, J. Supercond. Nov. Magn. 28 (2015) 2097–2107. [66] D. Pal, M. Mandal, A. Chaudhuri, B. Das, D. Sarkar, K. Mandal, Micelles induced high coercivity in single domain cobalt-ferrite nanoparticles, J. Appl. Phys. 108 (2010) 124317. [67] R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties, J. Appl. Phys. 110 (2011) 053910. [68] J. Jadhav, S. Biswas, A.K. Yadav, S.N. Jha, D. Bhattacharyya, Structural and magnetic properties of nanocrystalline NieZn ferrites: in the context of cationic distribution, J. Alloy. Compd. 696 (2017) 28–41. [69] Ch.S.L.N. Sridhar, Ch.S. Lakshmi, G. Govindraj, S. Bangarraju, L. Satyanarayana, D.M. Potukuchi, Structural, morphological, magnetic and dielectric characterization of nano-phased antimony doped manganese zinc ferrites, J. Phys. Chem. Solids 92 (2016) 70–84. [70] M. Tahir Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M. Naeem Ashiq, S. Ahmad Khan, Magnetic and electric behaviour of praseodymium substituted CuPryFe2-yO4 ferrites, J. Magn. Magn. Mater. 422 (2017) 337–343. [71] M. Niaz Akhtar, A. Rahman, A.B. Sulong, M. Azhar Khan, Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 nanosized ferrites for microwave absorption and high frequency applications, Ceram. Int. 43 (2017) 4357–4365. [72] S.B. Singh, C. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, P. Bhatt, S.M. Yusuf, D.L. Sastry, Structural, thermal and magnetic studies of MgxZn1−xFe2O4 nanoferrites: study of exchange interactions on magnetic anisotropy, Ceram. Int. 42 (2016) 19179–19186. [73] C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Phys. Rev. 83 (1951) 121. [74] J.C. Maxwell, A Treatise on Electricity and Magnetism, Oxford University Press, New York, 1954. [75] R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Dielectric properties and complex impedance spectroscopy studies of mixed Ni–Co ferrites, Smart Mater. Struct. 18 (2009) 085014. [76] I.T. Rabinkin, Z.I. Novikova, Ferrites Izv Acad. Nauk USSR Minsk, 1960, p. 146. [77] R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Dielectric properties of mixed Li–Ni–Cd ferrites, Smart Mater. Struct. 15 (2006) N36–N39. [78] J. Parashar, V.K. Saxena, J. Sharma, D. Bhatnagar, K.B. Sharma, Dielectric behaviour of Ni0.2Cu0.2Zn0.6Fe2O4 spinel ferrite, Macromol. Symp. 357 (2015) 43–46. [79] N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels, RSC Adv. 5 (2015) 37925. [80] R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2-xLaxO4 nanoparticles, J. Mater. Sci.: Mater. Electron. 28 (2017) 9139–9154. [81] N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4, J. Appl. Phys. 101 (2007) 084116. [82] N. Ponpandian, A. Narayanasamy, Influence of grain size and structural changes on the electrical properties of nanocrystalline zinc ferrite, J. Appl. Phys. 92 (2002) 2770. [83] A. Shukla, R.N.P. Choudhary, Impedance and modulus spectroscopy characterization of La+3/Mn+4 modified PbTiO3 nanoceramics, Curr. Appl. Phys. 11 (2011) 414–422. [84] M.M. Costa, G.F.M. Pires Jr., A.J. Terezo, M.P.F. Graça, A.S.B. Sombra, Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3, J. Appl. Phys. 110 (2011) 034107. [85] D.G. Chen, X.G. Tang, Q.X. Liu, Y.P. Jiang, C.B. Ma, R. Li, Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni, Zn)Fe2O4 ceramics, J. Appl. Phys. 113 (2013) 214110. [86] R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev, M. Hajdúchová, Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion, J. Phys. Chem. Solids 107 (2017) 150–161. [87] R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbanek, M. Machovsky, M. Masar, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honeymediated sol-gel combustion method, J. Phys. Chem. Solids 110 (2017) 87–99. | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504). | |
utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic; Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno, Czech Republic |