Publikace UTB
Repozitář publikační činnosti UTB

Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties en
dc.contributor.author Yadav, Raghvendra Singh
dc.contributor.author Kuřitka, Ivo
dc.contributor.author Vilčáková, Jarmila
dc.contributor.author Havlica, Jaromír
dc.contributor.author Kalina, Lukáš
dc.contributor.author Urbánek, Pavel
dc.contributor.author Machovský, Michal
dc.contributor.author Škoda, David
dc.contributor.author Masař, Milan
dc.contributor.author Holek, Martin
dc.relation.ispartof Ultrasonics Sonochemistry
dc.identifier.issn 1350-4177 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 40
dc.citation.spage 773
dc.citation.epage 783
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.ultsonch.2017.08.024
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1350417717303784
dc.subject Cavitation en
dc.subject Dielectric property en
dc.subject Impedance and modulus spectroscopy en
dc.subject Magnetic property en
dc.subject Nanoparticles en
dc.subject Sonochemical synthesis en
dc.description.abstract In this work, a facile and green method for gadolinium doped cobalt ferrite (CoFe2−xGdxO4; x = 0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles by using ultrasonic irradiation was reported. The impact of Gd3+ substitution on the structural, magnetic, dielectric and electrical properties of cobalt ferrite nanoparticles was evaluated. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). X-ray diffraction (XRD) study confirmed the formation of single phase spinel ferrite of CoFe2−xGdxO4 nanoparticles. XRD results also revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase gadolinium doped cobalt ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the impact of Gd3+ substitution in CoFe2O4 nanoparticles on cation distribution at the tetrahedral and octahedral site in spinel ferrite crystal system. The electrical properties showed that the Gd3+ doped cobalt ferrite (CoFe2−xGdxO4; x = 0.20) exhibit enhanced dielectric constant (277 at 100 Hz) and ac conductivity (20.2 × 10−9 S/cm at 100 Hz). The modulus spectroscopy demonstrated the impact of Gd3+ substitution in cobalt ferrite nanoparticles on grain boundary relaxation time, capacitance and resistance. Magnetic property measurement revealed that the coercivity decreases with Gd3+ substitution from 234.32 Oe (x = 0.00) to 12.60 Oe (x = 0.05) and further increases from 12.60 Oe (x = 0.05) to 68.62 Oe (x = 0.20). Moreover, saturation magnetization decreases with Gd3+ substitution from 40.19 emu/g (x = 0.00) to 21.58 emu/g (x = 0.20). This work demonstrates that the grain size and cation distribution in Gd3+ doped cobalt ferrite nanoparticles synthesized by sonochemical method, is effective in controlling the structural, magnetic, and electrical properties, and can be find very promising applications. © 2017 Elsevier B.V. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007453
utb.identifier.obdid 43877378
utb.identifier.scopus 2-s2.0-85028454046
utb.identifier.wok 000412959700087
utb.identifier.pubmed 28946484
utb.identifier.coden ULSOE
utb.source j-scopus
dc.date.accessioned 2017-09-14T09:00:45Z
dc.date.available 2017-09-14T09:00:45Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I [LO1504]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Yadav, Raghvendra Singh
utb.contributor.internalauthor Kuřitka, Ivo
utb.contributor.internalauthor Vilčáková, Jarmila
utb.contributor.internalauthor Urbánek, Pavel
utb.contributor.internalauthor Machovský, Michal
utb.contributor.internalauthor Škoda, David
utb.contributor.internalauthor Masař, Milan
utb.contributor.internalauthor Holek, Martin
utb.fulltext.affiliation Raghvendra Singh Yadava,⁎, Ivo Kuřitkaa, Jarmila Vilcakovaa, Jaromir Havlicab, Lukas Kalinab, Pavel Urbáneka, Michal Machovskya, David Skodaa, Milan Masařa, Martin Holeka a Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic B Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic ⁎ Corresponding author. E-mail addresses: raghvendra.nac@gmail.com, yadav@utb.cz (R.S. Yadav).
utb.fulltext.dates Received 25 July 2017; Received in revised form 22 August 2017; Accepted 23 August 2017; Available online 24 August 2017
utb.fulltext.references nanoparticles synthesized by starch-assisted sol-gel auto-combustion method, J. Supercond. Nov. Magn. 28 (2015) 2097–2107. [66] D. Pal, M. Mandal, A. Chaudhuri, B. Das, D. Sarkar, K. Mandal, Micelles induced high coercivity in single domain cobalt-ferrite nanoparticles, J. Appl. Phys. 108 (2010) 124317. [67] R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties, J. Appl. Phys. 110 (2011) 053910. [68] J. Jadhav, S. Biswas, A.K. Yadav, S.N. Jha, D. Bhattacharyya, Structural and magnetic properties of nanocrystalline NieZn ferrites: in the context of cationic distribution, J. Alloy. Compd. 696 (2017) 28–41. [69] Ch.S.L.N. Sridhar, Ch.S. Lakshmi, G. Govindraj, S. Bangarraju, L. Satyanarayana, D.M. Potukuchi, Structural, morphological, magnetic and dielectric characterization of nano-phased antimony doped manganese zinc ferrites, J. Phys. Chem. Solids 92 (2016) 70–84. [70] M. Tahir Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M. Naeem Ashiq, S. Ahmad Khan, Magnetic and electric behaviour of praseodymium substituted CuPryFe2-yO4 ferrites, J. Magn. Magn. Mater. 422 (2017) 337–343. [71] M. Niaz Akhtar, A. Rahman, A.B. Sulong, M. Azhar Khan, Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 nanosized ferrites for microwave absorption and high frequency applications, Ceram. Int. 43 (2017) 4357–4365. [72] S.B. Singh, C. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, P. Bhatt, S.M. Yusuf, D.L. Sastry, Structural, thermal and magnetic studies of MgxZn1−xFe2O4 nanoferrites: study of exchange interactions on magnetic anisotropy, Ceram. Int. 42 (2016) 19179–19186. [73] C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Phys. Rev. 83 (1951) 121. [74] J.C. Maxwell, A Treatise on Electricity and Magnetism, Oxford University Press, New York, 1954. [75] R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Dielectric properties and complex impedance spectroscopy studies of mixed Ni–Co ferrites, Smart Mater. Struct. 18 (2009) 085014. [76] I.T. Rabinkin, Z.I. Novikova, Ferrites Izv Acad. Nauk USSR Minsk, 1960, p. 146. [77] R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Dielectric properties of mixed Li–Ni–Cd ferrites, Smart Mater. Struct. 15 (2006) N36–N39. [78] J. Parashar, V.K. Saxena, J. Sharma, D. Bhatnagar, K.B. Sharma, Dielectric behaviour of Ni0.2Cu0.2Zn0.6Fe2O4 spinel ferrite, Macromol. Symp. 357 (2015) 43–46. [79] N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels, RSC Adv. 5 (2015) 37925. [80] R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2-xLaxO4 nanoparticles, J. Mater. Sci.: Mater. Electron. 28 (2017) 9139–9154. [81] N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4, J. Appl. Phys. 101 (2007) 084116. [82] N. Ponpandian, A. Narayanasamy, Influence of grain size and structural changes on the electrical properties of nanocrystalline zinc ferrite, J. Appl. Phys. 92 (2002) 2770. [83] A. Shukla, R.N.P. Choudhary, Impedance and modulus spectroscopy characterization of La+3/Mn+4 modified PbTiO3 nanoceramics, Curr. Appl. Phys. 11 (2011) 414–422. [84] M.M. Costa, G.F.M. Pires Jr., A.J. Terezo, M.P.F. Graça, A.S.B. Sombra, Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3, J. Appl. Phys. 110 (2011) 034107. [85] D.G. Chen, X.G. Tang, Q.X. Liu, Y.P. Jiang, C.B. Ma, R. Li, Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni, Zn)Fe2O4 ceramics, J. Appl. Phys. 113 (2013) 214110. [86] R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev, M. Hajdúchová, Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion, J. Phys. Chem. Solids 107 (2017) 150–161. [87] R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbanek, M. Machovsky, M. Masar, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honeymediated sol-gel combustion method, J. Phys. Chem. Solids 110 (2017) 87–99.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic; Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno, Czech Republic
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam