Publikace UTB
Repozitář publikační činnosti UTB

Antioxidant properties and textural characteristics of processed cheese spreads enriched with rutin or quercetin: The effect of processing conditions

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Antioxidant properties and textural characteristics of processed cheese spreads enriched with rutin or quercetin: The effect of processing conditions en
dc.contributor.author Přikryl, Jakub
dc.contributor.author Hájek, Tomáš
dc.contributor.author Švecová, Blanka
dc.contributor.author Salek, Richardos-Nicolaos
dc.contributor.author Černíková, Michaela
dc.contributor.author Červenka, Libor
dc.contributor.author Buňka, František
dc.relation.ispartof LWT - Food Science and Technology
dc.identifier.issn 0023-6438 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 87
dc.citation.spage 266
dc.citation.epage 271
dc.type article
dc.language.iso en
dc.publisher Academic Press
dc.identifier.doi 10.1016/j.lwt.2017.08.093
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0023643817306758
dc.subject antioxidants en
dc.subject flavonoids en
dc.subject melting condition en
dc.subject processed cheese en
dc.description.abstract Spreadable processed cheese (SPC) with addition of rutin or quercetin (0.5 g/100 g) were prepared at 80 °C and 90 °C for 1, 5 and 10 min. The effect of melting temperature and holding time of melting temperature on the quercetin/rutin retention, total phenolic content (TPC) and antioxidant capacity was studied. It was found that quercetin levels significantly decreased with the increase of holding time (P < 0.01) while rutin degradation was more affected by melting temperature (P < 0.01). An increase in TPC values and a decrease in antioxidant capacity measured by ABTS assay with the increase in melting temperature were observed in SPC with quercetin. The addition of rutin or quercetin significantly decreases the gel strength of the SPC samples. © 2017 Elsevier Ltd en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007483
utb.identifier.obdid 43878216
utb.identifier.scopus 2-s2.0-85028946016
utb.identifier.wok 000415769500034
utb.identifier.coden LBWTA
utb.source j-scopus
dc.date.accessioned 2017-10-16T14:42:44Z
dc.date.available 2017-10-16T14:42:44Z
dc.description.sponsorship Faculty of Chemical Technology, University of Pardubice [SGS_2017_001]
utb.contributor.internalauthor Salek, Richardos-Nicolaos
utb.contributor.internalauthor Černíková, Michaela
utb.contributor.internalauthor Buňka, František
utb.fulltext.affiliation Jakub Přikryl a , Tomáš Hájek a , Blanka Švecová a , Richardos Nikolaos Salek b , Michaela Černíková a , Libor Červenka a,* , František Buňka b a Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 53210, Pardubice, Studentská 573, Czech Republic b Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, 76001, Zlín, nám. T. G. Masaryka, 5555, Czech Republic * Corresponding author. E-mail address: libor.cervenka@upce.cz (L. Červenka).
utb.fulltext.dates Received 12 June 2017 Received in revised form 31 August 2017 Accepted 31 August 2017 Available online 4 September 2017
utb.fulltext.references Apak R., Özyürek, M., Güçlü, K., & Çapanoğlu, E. (2016). Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays. Journal of Agricultural and Food Chemistry, 64, 1028e1045. Barnes, J. S., Foss, F. W., & Schug, K. A. (2013). Thermally accelerated oxidative degradation of quercetin using continuous flow kinetic electrospray-ion trap-time of flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 24, 1513e1522. Biçer, E., & Özdemir, S. (2014). Interaction thermodynamics of rutin (vitamin P) with basic L-amino acids at physiological pH: The effect of temperature on the affinity order. Russian Journal of Electrochemistry, 50, 1058e1064. Bottesini, C., Paolella, S., Lambertini, F., Galaverna, G., Tedeschi, T., Dossena, A., et al. (2013). Antioxidant capacity of water soluble extracts from Parmigiano-Reggiano cheese. International Journal of Food Sciences and Nutrition, 64, 953e958. Buchner, N., Krumbein, A., Rohn, S., & Kroh, L. W. (2006). Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry, 20(2006), 3229e3235. Buňka, F., Hrabě, J., & Kráčmar, S. (2004). The effect of sterilisation on amino acid contents in processed cheese. International Dairy Journal, 14, 829e831. Buňka, F., Kříž, O., Veličková, A., Buňková, L., Kráčmar, S. (2009). Effect of acid hydrolysis time on amino acid determination in casein and processed cheese with different fat content. Journal of Food Composition and Analysis, 22, 224e232. Černíková, M., Salek, R.N., Kozáčková, D. Běhalová, H., Luňáková, L. & Buňka, F. (2017). The effect of selected processing parameters on viscoelastic properties of model processed cheese spreads. International Dairy Journal, 66, 84e90. Chew, K. K., Ng, S. Y., Thoo, Y. Y., Khoo, M. Z., Wan Aida, W. M., & Ho, C. W. (2011). Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Centella asiatica extracts. Journal of Food Research International, 18, 571e578. Cho, Y. J., & Lee, S. (2015). Evaluation of rutin from Tartary buckwheat milling fractions and evaluation of its thermal stability in an instant fried noodle system. Food Chemistry, 176, 40e44. Chua, L. S. (2014). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150, 805e817. Cui, Z., Kong, X., Chen, Y., Zhang, C., & Hua, Y. (2014). Effect of rutin incorporation on the physical and oxidative stability of soy protein-stabilized emulsions. Food Hydrocolloids, 41, 1e9. D'Andrea, G. (2015). Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 106, 256e271. Faion, A. M., Beal, P., Ril, F. T., Cichoski, A. J., Cansian, R. L., Valduga, A. T., et al. (2015). Influence of the addition of natural antioxidant from mate leaves (Ilex paraguariensis St. Hill) on the chemical, microbiological and sensory characteristics of different formulations of Prato cheese. Journal of Food Science and Technology, 52, 1516e1524. Ghatak, A., Nair, S., Vajpayee, A., Chaturvedi, P., Samant, S., Soley, K., et al. (2015). Evaluation of antioxidant activity, total phenolic content, total flavonoids, and LC-MS characterization of Saraca asoca (Roxb.) De. Wilde. International Journal of Advanced Research, 3, 318e327. Han, J., Britten, M., St-Gelais, D., Champagne, C. P., Fustier, P., Salmieri, S., et al. (2011). Polyphenolic compounds as functional ingredients in cheese. Food Chemistry, 124, 1589e1594. Harris, S., Brunton, N., Tiwari, U., & Cummins, E. (2015). Human exposure modelling of quercetin in onions (Allium cepa L.) following thermal processing. Food Chemistry, 187, 135e139. Kapoor, R., & Metzger, L. E. (2008). Process cheese: Scientific and technological aspects e a review. Comprehensive Reviews in Food Science and Food Safety, 7, 194e214. Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1, 177e187. Mehanna, N. S., Hassan, F. A. M., El-Messery, T. M., & Mohamed, A. G. (2017). Production of functional processed cheese by using tomato juice. International Journal of Dairy Science, 12, 155e160. Meira, S. M. M., Daroit, D. J., Helfer, V. E., Corrêa, A. P. F., Segalin, J., Carro, S., et al. (2012). Bioactive peptides in water-soluble extracts of ovine cheese from Southern Brazil and Uruguay. Food Research International, 48, 322e329. Mišan, A., Mimica-Dukić, N., Sakač, M., Mandić, A., Sedej, I., Simurina, O., et al. (2011). Antioxidant activity of medicinal plant extracts in cookies. Journal of Food Science, 76, 1239e1244. Mohamed, A. G., & Shalaby, S. M. (2016). Texture, chemical properties and sensory evaluation of a spreadable processed cheese analogue made with apricot pulp (Prunus armeniaca L.). International Journal of Dairy Science, 11, 61e68. Mohamed, A. G., Shalaby, S. M., & Gafour, W. A. (2016). Quality characteristics and acceptability of an analogue processed spreadable cheese made with carrot paste (Daucus carota L.). International Journal of Dairy Science, 11, 91e99. Pham, A., Bortolazzo, A., & White, J. B. (2012). Rapid dimerization of quercetin through the oxidative mechanism in the presence of serum albumin decrease its ability to induce cytotoxicity in MDA-MB-231 cells. Biochemical and Biophysical Research Communications, 427, 415e420. Rashidinejad, A., Birch, E. J., Sun-Waterhouse, D., & Everett, D. W. (2014). Delivery of green tea catechin and epogallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chemistry, 156, 176e183. Rodriguez-Mateos, A., Cifuentes-Gomez, T., George, T. W., & Spencer, J. P. E. (2014). Impact of cooking, proving, and baking on the (poly)phenol content of wild blueberry. Journal of Agricultural and Food Chemistry, 62, 3979e3986. Santos, R. D., Shetty, K., Cecchini, A. L., & da Silva Maglioranza, L. H. (2012). Phenolic compounds and total antioxidant activity determination in rosemary and oregano extracts and its use in cheese spread. Semina, 33, 655e666. Stratulat, I., Britten, M., Salmieri, S., Fustier, P., St-Gelais, D., Champagne, C. P., et al. (2014). Enrichment of cheese with bioactive lipophilic compounds. Journal of Functional Foods, 6, 48e59. Swenson, B. J., Wendorff, W. L., & Lindsay, R. C. (2000). Effects of ingredients on the functionality of fat-free process cheese spreads. Journal of Food Science, 65, 822e825. Vallverdú-Queralt, A., Regueiro, J., de Alvarenga, J. F. R., Torrado, X., & Lamuela-Raventos, R. M. (2014). Home cooking and phenolics: Effect of thermal treatment and addition of extra virgin olive oil on the phenolic profile of tomato sauces. Journal of Agricultural and Food Chemistry, 62, 3314e3320. Vogrincic, M., Timoracka, M., Melichacova, S., Vollmannova, A., & Kreft, I. (2010). Degradation of rutin and polyphenols during the preparation of Tartary buckwheat bread. Journal of Agricultural and Food Chemistry, 58, 4883e4887.
utb.fulltext.sponsorship Financial support from Faculty of Chemical Technology, University of Pardubice (no. SGS_2017_001) is gratefully acknowledged.
utb.scopus.affiliation Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, Czech Republic; Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, 76001, Zlín, nám. T. G. Masaryka, Czech Republic
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam