Kontaktujte nás | Jazyk: čeština English
dc.title | Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology | en |
dc.contributor.author | Stejskal, Jaroslav | |
dc.contributor.author | Mrlík, Miroslav | |
dc.contributor.author | Plachý, Tomáš | |
dc.contributor.author | Trchová, Miroslava | |
dc.contributor.author | Kovářová, Jana | |
dc.contributor.author | Li, Yu | |
dc.relation.ispartof | Reactive and Functional Polymers | |
dc.identifier.issn | 1381-5148 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.volume | 120 | |
dc.citation.spage | 30 | |
dc.citation.epage | 37 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.identifier.doi | 10.1016/j.reactfunctpolym.2017.09.004 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S1381514817301748 | |
dc.subject | conducting polymer | en |
dc.subject | conductivity | en |
dc.subject | electrorheology | en |
dc.subject | MoS2 | en |
dc.subject | polyaniline | en |
dc.subject | WS2 | en |
dc.description.abstract | Molybdenum and tungsten sulfides are semiconducting materials with flake-like morphology. Their applicability in electrorheological suspensions was enabled by the coating with a conducting polymer, polyaniline, after its conversion to non-conducting polyaniline base. For instance, the conductivity of tungsten sulfide, 0.056 S cm−1, increased to 0.98 S cm−1 after coating with polyaniline, and was conveniently reduced to 6.3 × 10−6 S cm−1 after conversion to polyaniline base. Such approach reduces the potential current drifts in electrorheological suspensions and allows for the application of sulfides in electrorheology. The optical microscopy demonstrated the formation of particle chains in silicone-oil suspensions after application of electric field. The electrorheological performance was assessed by the measurement of viscosity on the shear rate in the absence and in the presence of electric field and it is discussed on the bases of dielectric spectra. © 2017 Elsevier B.V. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007496 | |
utb.identifier.obdid | 43877164 | |
utb.identifier.scopus | 2-s2.0-85029604758 | |
utb.identifier.wok | 000413883800004 | |
utb.identifier.coden | RFPOF | |
utb.source | j-scopus | |
dc.date.accessioned | 2017-10-16T14:43:39Z | |
dc.date.available | 2017-10-16T14:43:39Z | |
dc.description.sponsorship | 17-04109S, GACR, Grantová Agentura České Republiky; LO1504, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy | |
dc.description.sponsorship | Czech Science Foundation [17-04109S]; Ministry of Education, Youth and Sports of the Czech Republic (NPU I) [LO1504] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Mrlík, Miroslav | |
utb.contributor.internalauthor | Plachý, Tomáš | |
utb.fulltext.affiliation | Jaroslav Stejskal a,⁎ , Miroslav Mrlík b , Tomáš Plachý b , Miroslava Trchová a , Jana Kovářová a , Yu Li a,c a Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic b Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic c Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China ⁎ Corresponding author. E-mail address: stejskal@imc.cas.cz (J. Stejskal). | |
utb.fulltext.dates | Received 2 August 2017 Received in revised form 30 August 2017 Accepted 14 September 2017 Available online 18 September 2017 | |
utb.fulltext.references | [1] K.J. Huang, L. Wang, Y.J. Liu, H.B. Wang, Y.M. Liu, L.L. Wang, Synthesis of polyaniline/2-dimensional graphene analog MoS 2 composites for high-performance supercapacitor, Electrochim. Acta 109 (2013) 587–594. [2] J. Wang, Z.C. Wu, K.H. Hu, X.Y. Chen, H.B. Yin, High conductivity graphene-like MoS 2 /polyaniline nanocomposites and its application in supercapacitor, J. Alloys Compd. 619 (2015) 38–43. [3] X.H. Cui, H.Y. Chen, Y. Tao, Research progress on the preparation and application of nano-sized molybdenum sulfide, Acta Chim. Sin. 74 (2016) 392–400. [4] T.E. Park, J. Suh, D. Seo, J. Park, D.Y. Lin, Y.S. Huang, H.J. Choi, J. Wu, C. Jang, J. Chang, Hopping conduction in p-type MoS 2 near the critical regime of the metal-insulator transition, Appl. Phys. Lett. 107 (2015) 223107. [5] S. Fedorova, J. Stejskal, Surface and precipitation polymerization of aniline, Langmuir 18 (2002) 5630–5632. [6] J. Stejskal, I. Sapurina, M. Trchová, Polyaniline nanostructures and the role of aniline oligomers in their formation, Prog. Polym. Sci. 35 (2010) 1420–1481. [7] K. Gopalakrishnan, S. Sultan, A. Govindaraj, C.N.R. Rao, Supercapacitors based on composites of polyaniline with nanosheets of nitrogen-doped RGO, BC1.5N, MoS 2 and WS 2 , Nano Energy 12 (2015) 52–58. [8] L.J. Ren, G.N. Zhang, Z. Yan, L.P. Kang, H. Xu, F. Shi, Z.B. Lei, Z.H. Liu, Threedimensional tubular MoS 2 /polyaniline hybrid electrode for high rate performance supercapacitor, ACS Appl. Mater. Interfaces 7 (2015) 28294–29302. [9] M. Kim, Y.K. Kim, J. Kim, S. Cho, G. Lee, J. Jang, Fabrication of a polyaniline/MoS 2 nanocomposite using self-stabilized dispersion polymerization for supercapacitors with high energy density, RSC Adv. 6 (2016) 27460–27465. [10] C.H. Sha, B. Lu, H.Y. Mao, J.P. Cheng, X.H. Pan, J.G. Lu, 3D ternary nanocomposites of molybdenum disulfide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors, Carbon 99 (2016) 26–34. [11] K. Wang, L. Li, Y. Liu, C. Zhang, T.X. Liu, Constructing a "pizza-like" MoS 2 /polypyrrole/polyaniline ternary architecture with high energy density and superior cycling stability for supercapacitors, Adv. Mater. Interfaces 3 (2016) 16000665. [12] C. Yang, Z.X. Chen, I. Shakir, Y.X. Xu, H.B. Lu, Rational synthesis of carbon shell coated polyaniline/MoS 2 monolayer composites for high-performance supercapacitors, Nano Res. 9 (2016) 951–962. [13] B.L. He, X. Zhang, H.N. Zhang, J.Y. Li, Q. Meng, Q.W. Tang, Transparent molybdenum sulfide decorated polyaniline complex counter electrodes for efficient bifacial dye-sensitized solar cells, Sol. Energy 147 (2017) 470–478. [14] T. Yang, R.R. Yang, H.Y. Chen, F.X. Nan, T. Ge, K. Jiao, Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine, ACS Appl. Mater. Interfaces 7 (2015) 2867–2872. [15] Y. Zhang, P. Chen, F.F. Wen, C. Huang, H.G. Wang, Construction of polyaniline/molybdenum sulfide nanocomposite: characterization and its electrocatalytic performance on nitrite, Ionics 22 (2016) 1095–1102. [16] Y. Gao, C.L. Chen, X.L. Tan, H. Xu, K.R. Zhu, Polyaniline-modified 3-D flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI), J. Colloid Interface Sci. 476 (2016) 62–70. [17] W.L. Zhang, D.G. Jiang, X.X. Wang, B.N. Hao, Y.D. Liu, Growth of polyaniline nanoneedles on MoS 2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis, J. Phys. Chem. C 121 (2017) 4989–4998. [18] S. Lee, Y.K. Kim, J.Y. Hong, J. Jang, Electro-response of MoS 2 nanosheets-based smart fluid with tailorable electrical conductivity, ACS Appl. Mater. Interfaces 8 (2016) 24221–24229. [19] X. Ou, X.R. Tan, X.F. Liu, H.M. Chen, Y. Fan, S.H. Chen, S.P. Wei, A cathodic luminol-based electrochemiluminescence biosensor for detecting cholesterol using 3D-MoS 2 -polyaniline nanoflowers and Ag nanocubes for signal enhancement, RSC Adv. 5 (2015) 66409–66415. [20] T. Yang, H.Y. Chen, T. Ge, J. Wang, W.H. Li, K. Jiao, Highly sensitive determination of chloramphenicol based on thin-layered MoS 2 /polyaniline nanocomposite, Talanta 144 (2015) 1324–1328. [21] H.Y. Wang, H. Jiang, Y.J. Hu, N. Li, X.J. Zhao, C.Z. Li, 2D MoS 2 /polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage, J. Mater. Chem. A 5 (2017) 5383–5389. [22] S.S. Ding, P. He, W.R. Feng, L. Li, G.L. Zhang, J.C. Chen, F.Q. Dong, H.C. He, Novel molybdenum disulfide nanosheets-decorated polyaniline: preparation, characterization and enhanced electrocatalytic activity for hydrogen evolution reaction, J. Phys. Chem. Solids 91 (2016) 41–47. [23] H.H. Wang, L. Ma, M.Y. Ga, T. Zhou, Design and fabrication of macroporous polyaniline nanorods@graphene-like MoS 2 nanocomposite with high electrochemical performance for supercapacitors, J. Alloys Compounds 699 (2017) 176–182. [24] G. Fu, L. Ma, M.G. Gan, X.L. Zhang, M. Jin, Y. Lei, P.S. Yang, M.F. Yan, Fabrication of 3D Spongia-shaped polyaniline/MoS 2 nanospheres composite assisted by polyvinylpyrrolidone (PVP) for high-performance supercapacitors, Synth. Met. 224 (2017) 36–45. [25] M. Trchová, E.N. Konyushenko, J. Stejskal, J. Kovářová, G. Ćirić-Marjanović, The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes, Polym. Degrad. Stab. 94 (2009) 929–938. [26] G. Ćirić-Marjanović, I. Pašti, N. Gavrilov, A. Janošević, S. Mentus, Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials, Chem. Pap. 67 (2013) 781–813. [27] F.L. Lai, Y.E. Miao, Y.P. Huang, Y.F. Zhang, T.X. Liu, Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction, ACS Appl. Mater. Interfaces 8 (2015) 3558–3566. [28] J.B. Liu, Y.L. Liu, Y.N. Ai, H.Y. Chen, C.Q. Feng, N.B. Yu, N. Fu, S. Han, H.L. Lin, N-doped carbon decorated with molybdenum disulfide with excellent electrochemical performance for lithium-ion batteries, RSC Adv. 6 (2016) 75626–75631. [29] L.C. Yang, S. Wang, J.J. Mao, J.W. Deng, Q.S. Gao, Y. Tang, O.G. Schmidt, Hierarchical MoS 2 /polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries, Adv. Mater. 25 (2013) 1180–1184. [30] L.R. Hu, Y.M. Ren, H.X. Yang, Q. Xu, Fabrication of 3D hierarchical MoS 2 /polyaniline and MoS 2 /C architectures for lithium-ion battery applications, ACS Appl. Mater. Interfaces 6 (2014) 14644–14652. [31] S. Han, Y. Ai, Y.P. Tang, J.Z. Jiang, D.Q. Wu, Carbonized polyaniline coupled molybdenum disulfide/graphene nanosheets for high performance lithium ion battery anodes, RSC Adv. 5 (2015) 96660–96664. [32] A. Voldman, D. Zbaida, H. Cohen, G. Leitus, R. Tenne, A nanocomposite of polyaniline/inorganic nanotubes, Macromol. Chem. Phys. 214 (2013) 2007–2015. [33] C.C. Mayorga-Martinez, J.G.S. Moo, B. Khezri, P. Song, A.C. Fisher, Z. Sofer, M. Pumera, Self-propelled supercapacitors for on-demand circuit configuration based on WS 2 nanoparticles micromachines, Adv. Funct. Polym. 26 (2016) 6662–6667. [34] J.P. Wang, X.J. Pang, X.X. Tan, Y.L. Song, L. Liu, Q. You, Q. Sun, F.P. Tan, N. Li, A triple-synergistic strategy for combinational photo/radiotherapy and multi-modality imaging based on hyalorunic acid-hybridized polyaniline-coated WS 2 nanodots, Nanoscale 9 (2017) 5551–5564. [35] J.H. Sung, M.S. Cho, H.J. Choi, Electrorheology of semiconducting polymers, J. Ind. Eng. Chem. 10 (2004) 1217–1229. [36] H.J. Choi, M.S. Jhon, Electrorheology of polymers and nanocomposites, Soft Matter 5 (2009) 1562–1567. [37] H.I. Unal, B. Sahan, O. Erol, Investigation of electrokinetic and electrorheological properties of polyindole prepared in the presence of a surfactant, Mater. Chem. Phys. 134 (2012) 382–391. [38] K. Oz, M. Yavuz, H. Yilmaz, H.I. Unal, B. Sari, Electrorheological properties and creep behavior of polyindole/poly(vinyl acetate) composite suspensions, J. Mater. Sci. 43 (2008) 1451–1459. [39] M. Çabuk, M. Yavuz, H.I. Unal, Electrokinteic, electrorheological and viscoelastic properties of polythiophene-graft-chitosan copolymer particles, Colloids Surf. A Physicochem. Eng. Asp. 510 (2016) 231–238. [40] Y.D. Liu, X.M. Quan, B.R. Hwang, Y.K. Kwon, H.J. Choi, Core–shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response, Langmuir 30 (2014) 1729–1734. [41] O. Quadrat, J. Stejskal, Polyaniline in electrorheology, J. Ind. Eng. Chem. 12 (2006) 352–361. [42] X.W. Wang, X. Qian, X.L. Jiang, Z. Lu, L.X. Hou, Tunable electrorheological characteristics and mechanism of a series of graphene-like molybdenum disulfide coated core-shell structured polystyrene microspheres, RSC Adv. 6 (2016) 26096–26103. [43] T. Plachy, M. Sedlacik, V. Pavlinek, M. Trchová, Z. Morávková, J. Stejskal, Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology, Chem. Eng. J. 256 (2014) 398–406. [44] J.B. Yin, X.J. Shui, R.T. Chang, X.P. Zhao, Graphene-supported carbonaceous dielectric sheets and their electrorheology, Carbon 50 (2012) 5247–5255. [45] J. Stejskal, R.G. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report), Pure Appl. Chem. 74 (2002) 857–867. [46] J. Stejskal, A. Riede, D. Hlavatá, J. Prokeš, M. Helmstedt, P. Holler, The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline, Synth. Met. 96 (1998) 55–61. [47] I. Sapurina, A.Yu. Osadchev, B.Z. Volchek, M. Trchová, A. Riede, J. Stejskal, In-situ polymerized polyaniline films 5. Brush-like chain ordering, Syth. Met. 129 (2002) 29–37. [48] S. Havriliak, S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer 8 (1967) 161–210. [49] T. Plachy, M. Sedlacik, V. Pavlinek, J. Stejskal, The observation of a conductivity threshold on the electrorheological effect of p-phenylenediamine oxidized with p-benzoquinone, J. Mater. Chem. C 3 (2015) 9973–9980. [50] M. Mrlik, M. Sedlacik, V. Pavlinek, P. Bober, M. Trchová, J. Stejskal, P. Sáha, Electrorheology of aniline oligomers, Colloid Polym. Sci. 291 (2013) 2079–2086. [51] M. Mrlík, R. Moučka, M. Ilčíková, P. Bober, N. Kazantseva, Z. Špitálský, M. Trchová, J. Stejskal, Charge transport and dielectric relaxation processes in aniline-based oligomers, Synth. Met. 19 (2014) 37–42. [52] T.Y. Wang, L. Liu, Z.W. Zhu, P. Papakonstantinou, J.B. Hu, H.Y. Liu, M.X. Li, Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. energy, Environ. Sci. 6 (2013) 625–633. [53] P.A. Chate, D.J. Sathe, P.P. Hankare, Electrical, optical and morphological properties of chemically deposited nanostructure tungsten disulfide thin films, Appl. Nanosci. 3 (2013) 19–23. [54] M. Trchová, Z. Morávková, I. Šeděnková, J. Stejskal, Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline, Chem. Pap. 66 (2012) 415–445. [55] P. Colomban, S. Folch, A. Gruger, Vibrational study of short-range order and structure of polyaniline bases and salts, Macromolecules 32 (1999) 3080–3092. [56] M. Trchová, Z. Morávková, M. Bláha, J. Stejskal, Raman spectroscopy of polyaniline and oligoaniline thin films, Electrochim. Acta 122 (2014) 28–38. [57] A. Lengalová, V. Pavlínek, P. Sáha, J. Stejskal, T. Kitano, O. Quadrat, The effect of dielectric properties on the electrorheology of suspensions of silica particles coated with polyaniline, Phys. A 321 (2003) 411–424. [58] M. Mrlik, V. Pavlinek, Q.L. Cheng, P. Saha, Synthesis of titanate/polypyrrole composite rod-like particles and the role of conducting polymer on electrorheological efficiency, Int. J. Mod. Phys. B 26 (2012) 1250007 (1–8). [59] M. Stěnička, V. Pavlínek, P. Sáha, N.V. Blinova, J. Stejskal, O. Quadrat, Structure changes of electrorheological fluids based on polyaniline particles with various hydrophilicities and time dependence of shear stress and conductivity during flow, Colloid Polym. Sci. 289 (2011) 409–414. | |
utb.fulltext.sponsorship | The authors thank the Czech Science Foundation (17-04109S) for financial support. M.M. and T.P. gratefully acknowledge the support of the Ministry of Education, Youth and Sports of the Czech Republic (NPU I, LO1504). | |
utb.scopus.affiliation | Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic; Centre of Polymer Systems, Tomas Bata University in Zlin, Zlin, Czech Republic; Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China |