Kontaktujte nás | Jazyk: čeština English
dc.title | Enhancement of 5-aminolevulinic acid phototoxicity by encapsulation in polysaccharides based nanocomplexes for photodynamic therapy application | en |
dc.contributor.author | Di Martino, Antonio | |
dc.contributor.author | Pavelková, Alena | |
dc.contributor.author | Postnikov, Pavel S. | |
dc.contributor.author | Sedlařík, Vladimír | |
dc.relation.ispartof | Journal of Photochemistry and Photobiology B: Biology | |
dc.identifier.issn | 1011-1344 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.volume | 175 | |
dc.citation.spage | 226 | |
dc.citation.epage | 234 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.identifier.doi | 10.1016/j.jphotobiol.2017.08.010 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S1011134417305328 | |
dc.subject | 5-aminolevulinic acid | en |
dc.subject | controlled delivery chitosan | en |
dc.subject | nanoparticles | en |
dc.subject | photodynamic therapy | en |
dc.subject | polysaccharides | en |
dc.description.abstract | Polysaccharides based nanocomplexes have been developed for encapsulation, controlled delivery and to enhance the phototoxicity of the photosensitizer 5-aminolevulinic acid for application in photodynamic therapy. The nanocomplexes were prepared by coacervation in a solvent free environment using chitosan as polycation while alginic and polygalacturonic acid as polyanions. The complexes showed average dimension in the range 90–120 nm, good stability in simulated physiological media and high drug encapsulation efficiency, up to 800 μg per mg of carrier. Release studies demonstrate the possibility to tune the overall release rate and the intensity of the initial burst by changing the external pH. Cytotoxicity and photocytotoxicity tests confirmed the not toxicity of the used polysaccharides. Cell viability results confirmed the improvement of 5-aminolevulinic acid phototoxicity when loaded into the carrier compared to the free form. No effect of the irradiation on the nanocomplexes structure and on the release kinetics of the drug was observed. The results demonstrate that the prepared formulations have suitable properties for future application in photodynamic therapy and to ameliorate the therapeutic efficacy and overcome the side-effects related to the use of the photosensitizer 5-aminolevulinic acid. © 2017 | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1007497 | |
utb.identifier.obdid | 43877162 | |
utb.identifier.scopus | 2-s2.0-85029289691 | |
utb.identifier.wok | 000413177200028 | |
utb.identifier.pubmed | 28915492 | |
utb.identifier.coden | JPPBE | |
utb.source | j-scopus | |
dc.date.accessioned | 2017-10-16T14:43:39Z | |
dc.date.available | 2017-10-16T14:43:39Z | |
dc.description.sponsorship | 15-08287Y, GACR, Grantová Agentura České Republiky; CZ.1.05/2.1.00/19.0409, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; LO1504, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy | |
dc.description.sponsorship | Czech Science Foundation [15-08287Y]; Ministry of Education, Youth and Sports of the Czech Republic [L01504, CZ.1.05/2.1.00/19.0409]; Tomsk Polytechnic University [VIU-316/2017] | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Di Martino, Antonio | |
utb.contributor.internalauthor | Pavelková, Alena | |
utb.contributor.internalauthor | Sedlařík, Vladimír | |
utb.fulltext.affiliation | Antonio Di Martino a,b,⁎ , Alena Pavelkova a , Pavel S. Postnikov b , Vladimir Sedlarik a a Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic b Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russian Federation * Corresponding author at: Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic. E-mail address: dimartino@utb.cz (A. Di Martino). | |
utb.fulltext.dates | Received 20 April 2017 Accepted 6 August 2017 Available online 08 August 2017 | |
utb.fulltext.references | [1] A. Filip, S. Clichici, A. Muresan, D. Daicoviciu, C. Tatomir, C. Login, C. Gherman, Effects of PDT with 5-aminolevulinic acid and chitosan on Walker carcinosarcoma, Exp. Oncol. 30 (3) (2008) 212–219. [2] S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, T. Joh, Current states and future views in photodynamic therapy, J. Photochem. Photobiol. C 12 (1) (2011) 46–67. [3] I.D.S.M. Costa, R.P. Abranches, M.T.J. Garcia, M.B.R. Pierre, Chitosan-based mu-coadhesive films containing 5-aminolevulinic acid for buccal cancer's treatment, J. Photochem. Photobiol. B 140 (2014) 266–275. [4] C.S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol. 54 (5) (1991) 659. [5] D. Nowis, M. Makowski, T. Stokłosa, M. Legat, T. Issat, J. Gołąb, Direct tumor damage mechanisms of photodynamic therapy, Acta Biochim. Pol. 52 (2) (2005) 339–352. [6] A.P. Castano, T.N. Demidova, M.R. Hamblin, Mechanisms in photodynamic therapy: part three—photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction, Photodiagn. Photodyn. Ther. 2 (2) (2005) 91–106. [7] M. Calin, M.I. Gruia, N. Herascu, T. Coman, Photodynamic therapy of Walker tumors by multiple laser irradiation, Photomed. Laser Surg. 23 (4) (2005) 405–409. [8] Y.N. Konan, R. Gurny, E. Allémann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol. B 66 (2) (2002) 89–106. [9] R.F. Donnelly, D.I. Morrow, F. Fay, C.J. Scott, S. Abdelghany, R.R.T. Singh, A.D. Woolfson, Microneedle-mediated intradermal nanoparticle delivery: potential for enhanced local administration of hydrophobic pre-formed photosensitisers, Photodiagn. Photodyn. Ther. 7 (4) (2010) 222–231. [10] L. Qi, Z. Xu, M. Chen, In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles, Eur. J. Cancer 43 (2007) 184–189. [11] M.N. Shaker, H.S. Ramadan, M.M. Mohamed, G.D. Roston, Enhanced photodynamic efficacy of PLGA-encapsulated 5-ALA nanoparticles in mice bearing Ehrlich ascites carcinoma, Appl. Nanosci. 4 (7) (2014) 777–789. [12] Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev., 60 (15), 1650–1662. [13] N. Jawahar, S.N. Meyyanathan, Polymeric nanoparticles for drug delivery and targeting: a comprehensive review, Int. J. Health Allied Sci. 1 (4) (2012) 217. [14] M.N.R. Kumar, A review of chitin and chitosan applications, React. Funct. Polym. 46 (1) (2000) 1–27. [15] W. Tiyaboonchai, Chitosan nanoparticles: a promising system for drug delivery, Naresuan Univ. J. 11 (3) (2003) 51–66. [16] Y. Sun, A. Wan, Preparation of nanoparticles composed of chitosan and its derivatives as delivery systems for macromolecules, J. Appl. Polym. Sci. 105 (2) (2007) 552–561. [17] J.S. Yang, Y.J. Xie, W. He, Research progress on chemical modification of alginate: a review, Carbohydr. Polym. 84 (1) (2011) 33–39. [18] A. Di Martino, A. Pavelková, S. Maciulyte, S. Budriene, V. Sedlarik, V., Polysaccharide-based nanocomplexes for co-encapsulation and controlled release of 5-Fluorouracil and Temozolomide, Eur. J. Pharm. Sci. 92 (2016) (2016) 276–286. [19] S.K. Motwani, S. Chopra, S. Talegaonkar, K. Kohli, F.J. Ahmad, R.K. Khar, et al., Eur. J. Pharm. Biopharm. 68 (3) (2008) 513–525. [20] A.A. Elzatahry, M.S. Eldin, E.A. Soliman, E.A. Hassan, Evaluation of alginate–chitosan bioadhesive beads as a drug delivery system for the controlled release of theophylline, J. Appl. Polym. Sci. 111 (5) (2009) 2452–2459. [21] S.C. Chen, Y.C. Wu, F.L. Mi, Y.H. Lin, L.C. Yu, H.W. Sung, A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery, J. Control. Release 96 (2) (2004) 285–300. [22] R. Khanna, K.S. Katti, D.R. Katti, Bone nodules on chitosan–polygalacturonic acid–hydroxyapatite nanocomposite films mimic hierarchy of natural bone, Acta Biomater. 7 (3) (2011) 1173–1183. [23] C.W. Chung, K.D. Chung, Y.I. Jeong, D.H. Kang, 5-Aminolevulinic acid-incorporated nanoparticles of methoxy poly (ethylene glycol)-chitosan copolymer for photodynamic therapy, Int. J. Nanomedicine 8 (1) (2013) 809–819. [24] S.J. Yang, M.J. Shieh, F.H. Lin, P.J. Lou, C.L. Peng, M.F. Wei, T.H. Young, Colorectal cancer cell detection by 5-aminolaevulinic acid-loaded chitosan nano-particles, Cancer Lett. 273 (2) (2009) 210–220. [25] P. Li, Y. Wang, Z. Peng, F. She, L. Kong, Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends, Carbohydr. Polym. 85 (3) (2011) 698–704. [26] Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems, Adv. Drug Deliv. Rev. 60 (15) (2008) 1650–1662. [27] V.R. Sinha, R. Kumria, Polysaccharides in colon-specific drug delivery, Int. J. Pharm. 224 (1) (2001) 19–38. [28] M. Rahim, N. Syairah, N. Ahmad, D. Kamarun, Preparation and characterization of chitosan/alginate polyelectrolyte complex prepared by using calcium tripolyphosphate ionic gelator, Materials Science Forum, vol. 857, Trans Tech Publications, 2016, pp. 447–451. [29] P. Li, Y.N. Dai, J.P. Zhang, A.Q. Wang, Q. Wei, Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine, Int. J. Biomed. Sci. 4 (3) (2008) 221–228. [30] B. Fan, Y. Xing, Y. Zheng, C. Sun, G. Liang, pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation, Drug Deliv. 23 (1) (2016) 238–247 2016. [31] A. Banerjee, J. Qi, R. Gogoi, J. Wong, S. Mitragotri, Role of nanoparticle size, shape and surface chemistry in oral drug delivery, J. Control. Release 238 (2016) 176–185. [32] S. Sanyakamdhorn, D. Agudelo, H.A. Tajmir-Riahi, Encapsulation of antitumor drug doxorubicin and its analogue by chitosan nanoparticles, Biomacromolecules 14 (2) (2013) 557–563. [33] A. Lamprecht, H. Yamamoto, H. Takeuchi, Y. Kawashima, Observations in simultaneous microencapsulation of 5-fluorouracil and leucovorin for combined pH-dependent release, Eur. J. Pharm. Biopharm. 59 (2) (2005) 367–371. [34] G. Suarato, W. Li, Y. Meng, Role of p H-responsiveness in the design of chitosan-based cancer nanotherapeutics: A review, Biointerphases 11 (4) (2016) 04B201. [35] H. Zhang, F. Wu, Y. Li, X. Yang, J. Huang, T. Lv, G. Liu, Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone, Beilstein J. Nanotechnol. 7 (1) (2016) 1861–1870. [36] S.J. Yang, F.H. Lin, H.M. Tsai, C.F. Lin, H.C. Chin, J.M. Wong, M.J. Shieh, Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms, Biomaterials 32 (8) (2011) 2174–2182. [38] Y.E.K. Lee, R. Kopelman, Polymeric nanoparticles for photodynamic therapy, J. Biomed. Nanotechnol. (2011) 151–178. [39] O.A. Gederaas, M.H. Rasch, K. Berg, J.W. Lagerberg, T.M. Dubbelman, Photodynamically induced effects in colon carcinoma cells (WiDr) by endogenous photosensitizers generated by incubation with 5-aminolaevulinic acid, J. Photochem. Photobiol. B 49 (1999) 2–3 (162-170). [40] O.A. Gederaas, K. Berg, I. Romslo, A comparative study of normal and reverse phase high pressure liquid chromatography for analysis of porphyrins accumulated after 5-aminolaevulinic acid treatment of colon adenocarcinoma cells, Cancer Lett. 150 (2) (2000) 205–213. | |
utb.fulltext.sponsorship | This work was funded by the Czech Science Foundation (grant no. 15-08287Y), Ministry of Education, Youth and Sports of the Czech Republic (grant no. LO1504 and CZ.1.05/2.1.00/19.0409) and Tomsk Polytechnic University (project VIU-316/2017). | |
utb.scopus.affiliation | Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, Czech Republic; Tomsk Polytechnic University, Lenin Av. 30, Tomsk, Russian Federation |