Kontaktujte nás | Jazyk: čeština English
dc.title | Biodegradace směsí PLA/PHB ve vodném termofilním anaerobním prostředí | cs |
dc.title | Biodegradation of blend PLA/PHB in thermophilic anaerobic aqueous conditions | en |
dc.contributor.author | Dvořáčková, Marie | |
dc.contributor.author | Bartuňková, Michaela | |
dc.contributor.author | Koutný, Marek | |
dc.contributor.author | Vaňharová, Ludmila | |
dc.relation.ispartof | Waste Forum | |
dc.identifier.issn | 1804-0195 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2017 | |
utb.relation.issue | 3 | |
dc.citation.spage | 209 | |
dc.citation.epage | 217 | |
dc.type | article | |
dc.language.iso | cs | |
dc.publisher | Czech Environment Management Center | |
dc.relation.uri | https://www.tretiruka.cz/media-a-odpady/waste-forum/archiv/a2017/waste-forum-2017-3-str-112-218/ | |
dc.subject | Anaerobic sludge | en |
dc.subject | Biodegradation | en |
dc.subject | Hydrolysis | en |
dc.subject | PLA | en |
dc.subject | Poly(lactic acid) | en |
dc.subject | Polyhydroxybutyrate | en |
dc.subject | Thermophilic | en |
dc.description.abstract | This work investigates the biodegradation of PLA poly(lactid-Acid) and blend PLA with polyhydroxybutyrate (PBH) in an environment of mesophilic (37°C) and thermophilic (55°C) anaerobic sludge. The thermophilic anaerobic sludge was prepared in a laboratory from mesophilic sludge sourced from a municipal waste water treatment plant and placed under thermophilic conditions. It was confirmed that PLA failed to decompose under mesophilic anaerobic conditions, while the degree of biodegradation achieved under thermophilic conditions more than 80%. The blend of PLA / PHB was under anaerobic thermophilic conditions almost completely decomposed, but under anaerobic mesophilic conditions, the decomposition rate corresponded approximately representation of PHB in the mixture. Abiotic hydrolysis of blend PLA/PBH in an environment of phosphate buffer (pH 7) at 55°C reached 23.8%, leading to the conclusion that hydrolytic enzymes present in thermophilic anaerobic sludge are involved in the biodegradation process as well as abiotic hydrolysis. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1007553 | |
utb.identifier.obdid | 43877082 | |
utb.identifier.scopus | 2-s2.0-85031092893 | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-01-15T16:31:27Z | |
dc.date.available | 2018-01-15T16:31:27Z | |
utb.contributor.internalauthor | Dvořáčková, Marie | |
utb.contributor.internalauthor | Bartuňková, Michaela | |
utb.contributor.internalauthor | Koutný, Marek | |
utb.contributor.internalauthor | Vaňharová, Ludmila | |
utb.fulltext.affiliation | Marie DVOŘÁČKOVÁ, Michaela BARTUŇKOVÁ, Marek KOUTNÝ, Ludmila VAŇHAROVÁ Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Czech Republic e-mail: dvorackova@ft.utb.cz | |
utb.fulltext.dates | - | |
utb.fulltext.references | 1. K. Fukushima, C. Abbate, D. Tabuani, M. Gennari and G. Camino, Polym Degrad Stabil, 2009, 94, 1646 – 1655. 2. K. Fukushima, D. Tabuani and G. Camino, Mat Sci Eng C-Bio S, 2009, 29, 1433 – 1441. 3. G. Kale, R. Auras, S. P. Singh and R. Narayan, Polym Test, 2007, 26, 1049 – 1061. 4. O. Cadar, M. Paul, C. Roman, M. Miclean and C. Majdik, Polym Degrad Stabil, 2012, 97, 354 – 357. 5. B. G. Hermann, L. Debeer, B. De Wilde, K. Blok and M. K. Patel, Polym Degrad Stabil, 2011, 96, 1159 – 1171. 6. T. Kijchavengkul, R. Auras, M. Rubino, M. Ngouajio and R. T. Fernandez, Polym Test, 2006, 25, 1006 – 1016. 7. J. J. Kolstad, E. T. H. Vink, B. De Wilde and L. Debeer, Polym Degrad Stabil, 2012, 97, 1131 – 1141. 8. M. J. Krause and T. G. Townsend, Environ Sci Tech Let, 2016, 3, 166 – 169. 9. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, Int J Mol Sci, 2009, 10, 3824 – 3835. 10. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, Polym Degrad Stabil, 2009, 94, 1397 – 1404. 11. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, Polym Degrad Stabil, 2010, 95, 1349 – 1355. 12. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, J Polym Environ, 2012, 20, 673 – 680. 13. H. Yagi, F. Ninomiya, M. Funabashi and M. Kunioka, Polym Degrad Stabil, 2013, 98, 1182 – 1187. 14. B. Shi, V. Topolkaraev and J. Wang, Acs Sym Ser, 2011, 1063, 117 – 132. 15. M. Itavaara, S. Karjomaa and J. F. Selin, Chemosphere, 2002, 46, 879 – 885. 16. S. P. Lyu, J. Schley, B. Loy, D. Lind, C. Hobot, R. Sparer and D. Untereker, Biomacromolecules, 2007, 8, 2301 – 2310. 17. E. J. Jung, P. K. Shin and H. K. Bae, J Microbiol Biotechn, 1999, 9, 464 – 468. 18. Y. X. Weng, Y. J. Jin, Q. Y. Meng, L. Wang, M. Zhang and Y. Z. Wang, Polym Test, 2013, 32, 918 – 926. 19. M. A. Abdelwahab, A. Flynn, B. S. Chiou, S. Imam, W. Orts and E. Chiellini, Polym Degrad Stabil, 2012, 97, 1822 – 1828. 20. M. P. Arrieta, E. Fortunati, F. Dominici, E. Rayon, J. Lopez and J. M. Kenny, Polym Degrad Stabil, 2014, 107, 139 – 149. 21. P. Stloukal, M. Koutny, V. Sedlarik and P. Kucharczyk, Aip Conf Proc, 2012, 1459, 20 – 22. 22. B. Shi and D. Palfery, J Polym Environ, 2010, 18, 122 – 127. | |
utb.fulltext.sponsorship | Autoři děkují za finanční podporu internímu grantovému projektu Univerzity Tomáše Bati ve Zlíně IGA/FT/2017/003. | |
utb.scopus.affiliation | Department of Environmental Engineering, Faculty of Technology, Tomas Bata University in Zlín, Czech Republic | |
utb.fulltext.projects | IGA/FT/2017/003 |