Kontaktujte nás | Jazyk: čeština English
dc.title | Quasi-continuous selections | en |
dc.contributor.author | Matejdes, Milan | |
dc.relation.ispartof | Real Analysis Exchange | |
dc.identifier.issn | 0147-1937 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2009 | |
utb.relation.volume | 34 | |
utb.relation.issue | 1 | |
dc.citation.spage | 109 | |
dc.citation.epage | 113 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Michigan State University Press | |
dc.subject | Baire continuity | en |
dc.subject | Minimal multifunction | en |
dc.subject | Quasi-continuity | en |
dc.subject | Selection | en |
dc.description.abstract | In this paper we will study the existence of a quasi-continuous selection for a multifunction F: X → Y which is upper Baire continuous with respect to compact complement topology. The upper Baire continuity means that for any open set V the upper inverse image F+(V ) = (x: F(x) ⊂ V ) is of the form (G \ S) ∪ T, where G is of second category and open, S; T are of first category and T is a subset of the closure of G. This type of continuity seems to be very close to the Baire property of mappings, and the upper Baire continuity has three nice features. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1007578 | |
utb.identifier.scopus | 2-s2.0-85032364399 | |
utb.source | j-scopus | |
dc.date.accessioned | 2018-01-15T16:31:30Z | |
dc.date.available | 2018-01-15T16:31:30Z | |
utb.contributor.internalauthor | Matejdes, Milan | |
utb.fulltext.affiliation | Milan Matejdes Department of Mathematics, Faculty of Applied Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4511, 760 05 Zlín, Czech Republic. email: matejdesfai.utb.cz | |
utb.fulltext.dates | - | |
utb.scopus.affiliation | Department of Mathematics, Faculty of Applied Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4511, Zlín, Czech Republic | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | Department of Mathematics |