Publikace UTB
Repozitář publikační činnosti UTB

Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method en
dc.contributor.author Yadav, Raghvendra Singh
dc.contributor.author Kuřitka, Ivo
dc.contributor.author Vilčáková, Jarmila
dc.contributor.author Havlica, Jaromír
dc.contributor.author Másilko, Jiří
dc.contributor.author Kalina, Lukáš
dc.contributor.author Tkacz, Jakub
dc.contributor.author Švec, Jiří
dc.contributor.author Enev, Vojtěch
dc.contributor.author Hajdúchová, Miroslava
dc.relation.ispartof Advances in Natural Sciences: Nanoscience and Nanotechnology
dc.identifier.issn 2043-6254 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 2043-6262 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 8
utb.relation.issue 4
dc.type article
dc.language.iso en
dc.publisher Institute of Physics Publishing
dc.identifier.doi 10.1088/2043-6254/aa853a
dc.relation.uri http://iopscience.iop.org/article/10.1088/2043-6254/aa853a/meta
dc.subject autoclaving techniqueconventional heating en
dc.subject gold nanoparticles-hydrothermal en
dc.subject gold nanoparticles-hydrothermal autoclaving technique-conventional heating technique-catalytic activity en
dc.subject technique-catalytic activity en
dc.description.abstract In this work CoFe2O4 spinel ferrite nanoparticles were synthesized by honey mediated sol-gel combustion method and further annealed at higher temperature 500 °C, 700 °C, 900 °C and 1100 °C. The synthesized spinel ferrite nanoparticles is investigated by x-ray diffraction, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), field emission scanning electron microscopy, x-ray photoelectron spectroscopy and vibrating sample magnetometer. The x-ray diffraction study reveals face-centered cubic spinel cobalt ferrite crystal phase formation. The crystallite size and lattice parameter are increased with annealing temperature. Raman and Fourier transform infrared spectra also confirm spinel ferrite crystal structure of synthesized nanoparticles. The existence of cation at octahedral and tetrahedral site in cobalt ferrite nanoparticles is confirmed by x-ray photoelectron spectroscopy. Magnetic measurement shows increased saturation magnetization 74.4 emu g-1at higher annealing temperature 1100 °C, high coercivity 1347.3 Oe at lower annealing temperature 500 °C, and high remanent magnetization 32.3 emu g-1at 900 °C annealing temperature. The magnetic properties of synthesized ferrite nanoparticles can be tuned by adjusting sizes through annealing temperature. Furthermore, the dielectric constant and ac conductivity shows variation with frequency (1-107Hz), grain size and cation redistribution. The modulus spectroscopy study reveals the role of bulk grain and grain boundary towards the resistance and capacitance. The cole-cole plots in modulus formalism also well support the electrical response of nanoparticles originated from both grain and grain boundaries. The dielectric, electrical, magnetic, impedance and modulus spectroscopic characteristics of synthesized CoFe2O4spinel ferrite nanoparticles demonstrate the applicability of these nanoparticles for magnetic recording, memory devices and for microwave applications. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007682
utb.identifier.obdid 43877130
utb.identifier.scopus 2-s2.0-85039073109
utb.identifier.wok 000980804500003
utb.source j-scopus
dc.date.accessioned 2018-01-15T16:31:39Z
dc.date.available 2018-01-15T16:31:39Z
dc.description.sponsorship LO1504, NPU, Northwestern Polytechnical University
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic-Program NPU I [LO1504]
dc.rights Attribution 3.0 International
dc.rights.uri https://creativecommons.org/licenses/by/3.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Yadav, Raghvendra Singh
utb.contributor.internalauthor Kuřitka, Ivo
utb.contributor.internalauthor Vilčáková, Jarmila
utb.fulltext.affiliation Raghvendra Singh Yadav1, Ivo Kuřitka1, Jarmila Vilcakova1, Jaromir Havlica2, Jiri Masilko2, Lukas Kalina2, Jakub Tkacz2, Jiří Švec2, Vojtěch Enev2 and Miroslava Hajdúchová2 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czechia 2 Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czechia E-mail: yadav@cps.utb.cz
utb.fulltext.dates Received 9 February 2017 Accepted for publication 26 July 2017 Published 29 August 2017
utb.fulltext.references [1] Ramos A V, Santos T S, Miao G X, Guittet M-J, Moussy J-B and Moodera J S 2008 Phys. Rev. B 78 180402 [2] Fritsch D and Ederer C 2012 Phys. Rev. B 86 014406 [3] Kolhatkar A G, Jamison A C, Litvinov D, Willson R C and Randall Lee T 2013 Int. J. Mol. Sci. 14 15977 [4] Andersen H L and Christensen M 2015 Nanoscale 7 3481 [5] Lu L T, Dung N T, Tung L D, Thanh C T, Quy O K, Chuc N V, Maenosono S and Thanh N T K 2015 Nanoscale 7 19596 [6] Sabale S, Jadhav V, Khot V, Zhu X, Xin M and Chen H 2015 J. Mater. Sci.: Mater. Med. 26 127 [7] Hu W, Zou L, Chen R, Xie W, Chen X, Qin N, Li S, Yang G and Bao D 2014 Appl. Phys. Lett. 104 143502 [8] Praveena K and Srinath S 2014 J. Nanosci. Nanotechnol. 14 4371 [9] Hannour A, Vincent D, Kahlouche F, Tchangoulian A, Neveu S and Dupuis V 2014 J. Magn. Magn. Mater. 353 29 [10] Ding R, Lv L L, Qi L, Jia M and Wang H 2014 RSC Adv. 4 1754 [11] Mangrulkar P A, Polshettiwer V, Labhsetwar N K, Varma R S and Rayalu S S 2012 Nanoscale 4 5202 [12] Lee N, Choi Y, Lee Y, Park M, Moon W K, Choi S H and Hyeon T 2012 Nano Lett. 12 3127 [13] Guardia P, Corato R D, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L and Pellegrino T 2012 ACS Nano 6 3080 [14] Peddis D, Yaacoub N, Ferretti M, Martinelli A, Piccaluga G, Musinu A, Cannas C, Navarra G, Greneche J M and Fiorani D 2011 J. Phys.: Condens. Matter 23 426004 [15] Dormann J L and Fiorani D 1992 Magnetic Properties of Fine Particles (Amsterdam: North-Holland) [16] Datt G, Bishwas M S, Raja M M and Abhyankar A C 2016 Nanoscale 8 5200 [17] Mazarío E, Herrasti P, Morales M P and Menéndez N 2012 Nanotechnology 23 355708 [18] Abbas M, Rao B P, Islam Md N, Kim K W, Naga S M, Takahashi M and Kim C G 2014 Ceram. Int. 40 3269 [19] Munjal S, Khare N, Nehate C and Koul V 2016 J. Magn. Magn. Mater. 404 166 [20] Mathew D S and Juang R-S 2007 Chem. Eng. J. 129 51 [21] Prathapani S, Jayaraman T V, Varaprasadarao E K and Das D 2014 J. Appl. Phys. 116 023908 [22] Laokul P, Amornkitbamrung V, Seraphin S and Maensiri S 2011 Curr. Appl. Phys. 11 101 [23] Phumying S, Labuayai S, Swatsitang E, Amornkitbamrung V and Maensiri S 2013 Mater. Res. Bull. 48 2060 [24] Manikandan A, Sridhar R, Arul Antony S and Ramakrishna S 2014 J. Mol. Struct. 1076 188 [25] Wongpratat U, Maensiri S and Swatsitang E 2016 Appl. Surf. Sci. 380 60 [26] Kombaiah K, Judith Vijaya J, John Kennedy L and Bououdina M 2016 Ceram. Int. 42 2741 [27] Sun J, Wang Z, Wang Y, Zhu Y, Shen T, Pang L, Wei K and Li F 2012 Mater. Sci. Eng. B 177 269 [28] Tong G, Du F, Xiang L, Liu F, Mao L and Guan J 2014 Nanoscale 6 778 [29] Yadav R S, Havlica J, Masilko J, Kalina L, Wasserbauer J, Hajdúchová M, Enev V, Kuřitka I and Kožáková Z 2016 J. Magn. Magn. Mater. 399 109 [30] Yadav R S et al 2015 J. Magn. Magn. Mater. 378 190 [31] Yadav R S, Havlica J, Masilko J, Kalina L, Hajdúchová M, Enev V, Wasserbauer J, Kuřitka I and Kožáková Z 2015 J. Supercond. Nov. Magn. 28 1851 [32] Ball D W 2007 J. Chem. Educ. 84 1643 [33] Yang L, Xi G and Liu J 2015 Ceram. Int. 41 3555 [34] Li L-Z, Tu X-Q, Wang R and Peng L 2015 J. Magn.Magn. Mater. 381 328 [35] Wang B, Wang G, Lv Z and Wang H 2015 Phys. Chem. Chem. Phys. 17 27109 [36] Pan H, Jin L, Zhang B, Su H, Zhang H and Yang W 2017 Sensors Actuators B 243 29 [37] Gore S K, Mane R S, Naushad Mu, Jadhav S S, Zate M K, Alothman Z A and Hui B K N 2015 Dalton Trans. 44 6384 [38] Saccone F D, Ferrari S, Errandonea D, Grinblat F, Bilovol V and Agouram S 2015 J. Appl. Phys. 118 075903 [39] Al-Hilli M F, Li S and Kassim K S 2012 J. Magn. Magn. Mater. 324 873 [40] Rahman Md T, Vargas M and Ramana C V 2014 J. Alloys Comp. 617 547 [41] Nikam D S, Jadhav S V, Khot V M, Bohara R A, Hong C K, Mali S S and Pawar S H 2015 RSC Adv. 5 2338 [42] Baraliya J D and Joshi H H 2014 Vib. Spectrosc. 74 75 [43] Chandramohan P, Srinivasan M P, Velmurugan S and Narasimhan S V 2011 J. Solid State Chem. 184 89 [44] Yu T, Shen Z X, Shi Y and Ding J 2002 J. Phys.: Condens. Matter 14 L613 [45] Choi Y I, Kim Y-I, Cho D W, Kang J-S, Leung K T and Sohn Y 2015 RSC Adv. 5 79624 [46] Assar S T and Abosheiasha H F 2015 J. Magn. Magn. Mater. 374 264 [47] Zaki H M and Dawoud H A 2010 Physica B 405 4476 [48] Aneesh Kumar K S and Bhowmik R N 2014 Mater. Chem. Phys. 146 159 [49] Naik S R and Salker A V 2012 J. Mater. Chem. 22 2740 [50] Tian C, Fu S and Lucia L A 2015 Cellulose 22 2571 [51] Kambale R C, Shaikh P A, Kamble S S and Kolekar Y D 2009 J. Alloys Comp. 478 599 [52] Ansari F, Sobhani A and Salavati-Niasari M 2014 RSC Adv. 4 63946 [53] Cullity B D and Graham C D 2009 Introduction to Magnetic Materials (Reading, MA: Addison-Wesley) p 227 [54] Mondal T S, Bhattacharjee S, Roychowdhury A, Majumder S, Das D, Mitra M K and Ghosh C K 2015 Mater. Res. Express 2 046102 [55] Pandey B, Litterst F J and Baggio-Saitovitch E M 2015 J. Magn. Magn. Mater. 385 412 [56] Muscas G et al 2015 Nanoscale 7 13576 [57] Abdallah H M I, Moyo T and Nagema N 2015 J. Magn. Magn. Mater. 394 223 [58] Néel L and Acad C R 1950 Sci. Paris 230 375 [59] El-Okr M M, Salem M A, Salim M S, El-Okr R M, Ashoush M and Talaat H M 2011 J. Magn. Magn. Mater. 323 920 [60] Kamble R B, Varade V, Ramesh K P and Prasad V 2015 AIP Adv. 5 017119 [61] Bate G 1980 Ferromagnetic Materials ed E P Wohlforth (North-Holland: Amsterdam) vol 2 p 431 [62] Zhang Y, Yang Z, Zhu B-P, Yu W, Chen S, Yang X-F, Jin F and Ou-Yang J 2014 Ceram. Int. 40 3439 [63] Kakade S G, Ma Y-R, Devan R S, Kolekar Y D and Ramana C V 2016 J. Phys. Chem. C 120 5682 [64] Koops C G 1951 Phys. Rev. 83 121 [65] Wagner K W 1973 Am. J. Phys. 40 317 [66] Kambale R C, Shaikh P A, Bhosale C H, Rajpure K Y and Kolekar Y D 2009 Smart Mater. Struct. 18 085014 [67] Murugesan C and Chandrasekaran G 2015 RSC Adv. 5 73545 [68] Ponpandian N, Balaya P and Narayanasamy A 2002 J. Phys.: Condens. Matter 14 3221 [69] Sivakumar N, Narayanasamy A, Jeyadevan B, Justin Joseyphus R and Venkateswaran C 2008 J. Phys. D: Appl. Phys. 41 245001 [70] Kolekar Y D, Sanchez L J and Ramana C V 2014 J. Appl. Phys. 115 144106 [71] Gabal M A, Al Angari Y M and Al-Agel F A 2015 J. Magn. Magn. Mater. 391 108 [72] Aziz H S, Rasheed S, Khan R A, Rahim A, Nisar J, Shah S M, Iqbal F and Khan A R 2016 RSC Adv. 6 6589 [73] Iqbal M J, Khan R A, Mizukami S and Miyazaki T 2012 Ceram. Int. 38 4097 [74] Patange S M, Shirsath S E, Lohar K S, Jadhav S S, Kulkarni N and Jadhav K M 2011 Physica B 406 663 [75] Verma S, Chand J and Singh M 2014 J. Alloys Comp. 587 763 [76] Kumari N, Kumar V and Singh S K 2015 RSC Adv. 5 37925 [77] Costa M M, Pires G F M Jr, Terezo A J, Grac M P F and Sombra A S B 2011 J. Appl. Phys. 110 034107 [78] Sinha A and Dutta A 2015 RSC Adv. 5 100330 [79] Kaiser M 2016 Mater. Res. Bull. 73 452 [80] Bhowmik R N and Muthuselvam I P 2013 J. Magn. Magn. Mater. 335 64 [81] Narayanan S, Baral A K and Thangadurai V 2016 Phys. Chem. Chem. Phys. 18 15418 [82] Rasool K, Rafiq M A, Ahmad M, Imran Z and Hasan M M 2012 Appl. Phys. Lett. 101 253104 [83] Sinclair D C and West A R 1989 J. Appl. Phys. 66 3850
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504).
utb.wos.affiliation [Yadav, Raghvendra Singh; Kuritka, Ivo; Vilcakova, Jarmila] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic; [Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Tkacz, Jakub; Svec, Jiri; Enev, Vojtech; Hajduchova, Miroslava] Brno Univ Technol, Mat Res Ctr, Purkynova 464-118, Brno 61200, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic; Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Czechia, Brno, Czech Republic
utb.fulltext.projects LO1504
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 3.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 3.0 International